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Part |I.

Automatic Text Classification






1. Motivation

The proliferation of computer based communication in all aspects of life leads to an over-
whelming amount of data available to the user. Nowadays, nearly all public knowledge
is available on the Internet, and can be retrieved within seconds. At the beginning of
March 2001, the search engine Google [10] has indexed 1,346,966,000 web pages. This is
only a fraction of all documents available on the WWW! For somebody using email in
the workplace and privately, it is not uncommon to receive more than a dozen, for some
even more than a hundred emails a day. For the first time in history, the knowledge of
the world is put to the fingertips of those who have access to the modern means of com-
puter databases and communications. Back in the old days, the location and retrieval
of stored information was the main problem in getting informed. The problem of infor-
mation retrieval lies in a different field now: In order to get informed, one has to filter
out the relevant information from all the irrelevant and misleading information under
which it is buried. For somebody who works with the Internet, the search for knowledge
is nowadays like looking for a needle in a haystack.

Various methods have been proposed and implemented to use information technol-
ogy as an aid in finding and sorting information. Search engines are an invaluable tool
when looking for information on the Internet. Still, the power of automatic tools for
information retrieval is limited. The user interface of search engines have limited expres-
siveness. Common search engines do not really find information, but only limit the huge
space of billions of web pages to those web pages which might contain information. In
other aspects of modern communication, namely email and Usenet, information retrieval
methods are little used.

The approach of traditional search engines is very different from the way a human
retrieves information from a library, a book, a newspaper or her personal correspondence.
Search engines, as well as systems for the automatic filing of emails, need explicit and
strict rules what to look for. The way a human classifies information is rather associative.
A human decides which letter to read first, or which article to read from a newspaper,
not based on strict rules, but based on association from previous experiences. In this
associations, a human heavily relays not so much on the informational content of an
article or a letter — in order to gasp the content, he or she would have to read it in the
first place — but on structural information. This structural or meta-information is for
example the envelope. Just by looking at the envelope, a human knows whether this is a
high-priority letter from his rich aunt, or a bill from the phone company. A human needs
little information to decide whether a newspaper article is interesting: he or she will look
where the article is placed, what’s the headline, perhaps who wrote it, and which pictures
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12 CHAPTER 1. MOTIVATION

are in the article.

In this thesis, we show how a similar approach can used for automatic, computer-
based information retrieval. We show ways to classify information not based on strict
rules, but on previous examples. We show how the structural information about a doc-
ument can be taken into consideration for the classification task.

Text classification is not only useful when trying to find and extract information
from global, distributed databases like the Internet. On a local base, many people and
companies have large sets of semi-structured data stored in databases and on computer
hard disks. In order to retrieve this information, intelligent classification methods are
necessary.

This thesis is split into two parts. In the first part, we show how generic methods
for text classification can be adapted to tasks where we have additional information
provided by the structure of the documents. We show how the performance of generic
text classification algorithms can be improved by exploiting structural information from
emails and web pages. The second part gives a system description of MIC, the text
classification system which has been developed for this thesis. MIC implements the
classification method from this part of the thesis. In the second part, we also show how
MIC can be used on a variety of real world tasks.

1.1. Text Classification Applications

The University Koblenz AI Research Group is involved in several projects developing
applications for intelligent information retrieval, machine learning, and intelligent web
search. In some of these projects, we need a component for the automatic classification
of texts. Numerous methods and implementation for automatic text classification are
available. For a comparison of the performance of various text classification methods,
see [42]. Generic text classification methods, usually based on statistical methods, use
“plain” text as input. In the projects we are working on, we usually do not deal with
plain texts, but with documents which contain some additional structural information
about a text. An example for these structured texts are web pages. The text contained
in web pages is structured by a set of tags. The tags mark structural properties of certain
text segments, e.g. indicating that some text is a headline, a paragraph of ordinary text,
or a link to another web page. The University Koblenz AI Research Group is actively
researching methods to utilize this structure information for information extraction tasks.
These work is done by Bernd Thomas. Publications include [36], [37], [39]. A full list of
literature can be found on Bernd Thomas’ web page [35].

The goal of this thesis is to create a text classification system which can be used
within these projects. For this, it has to fulfill two main requirement:

1. Provide text classification algorithms which exploit the special features of struc-
tured documents

2. Be flexible enough to be used in a large variety of environments, both as an embed-
ded component in larger systems and as a stand alone text classification program.
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Figure 1.1.: MIA System. (From [38]).

We will use our text classification methods and the system which implements them
in three practical scenarios: As a component in the MIA-system, as a component of a
system to automatically classify emails, and as a stand alone program.

We are looking for a text classification system which can be used in practical appli-
cations. In the next sections of this chapter, we will define the special requirements of
the text classification tasks we want to solve.

1.2. The Info System MIA

MIA (“Mobile Information Agents”) is an ongoing research project at the University
Koblenz-Landau Artificial Intelligence Research Group [1]. The aim of MIA is to create
a search engine focusing on the needs of mobile users using Al-techniques. When a
traveler comes to a place that she does not know, the MIA system shall provide her with
relevant information. Some information is relevant, when it meets the interests of the
user, and the location of her. An example might be information about the next restaurant
of her favorite cuisine, or the program of the local movie theater.

The MIA projects realizes this by combining hardware and software in a unique way.
The hardware components used in MIA are: A server with a direct connection to this
Internet. This server does the actual searching. Since MIA targets mobile users, the user
connects to the server from a PDA via a wireless Internet connection (usually a data-
enabled cellular phone). The current position of the user is either supplied manually, or
read out from a GPS-device connected to the PDA. This is shown in figure 1.1.

Beside being based on the local position of the user, there are several other key
differences to ordinary search engines:
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e Intelligent spidering

Ordinary search engines keep huge databases of indexed web pages. When queried,
they do not search the actual web, but their database. MIA does not spider the web
exhaustively in order to create a large database. It spiders intelligently. It “surfs”
the web like an ordinary user. Starting from common search engines, it follows
links until it finds the information the user is looking for. One consequence of this
is that MIA’s spidering is too slow for synchronous operation. For an ordinary
search engine, one issues a query and gets the answer immediately. MIA works
asynchronous. The user defines her search-profile (a collection of the topics she is
interested in while on the road) before a trip, and sends updates about her position
in regular intervals while on the road. The server uses this information to spider
web pages and collect information. Results are stored on the server. The results
are transmitted to the user when she requests them.

e Information, not references

The second big difference to ordinary web search engines is that the results of a
MIA-search is not a list of links to web pages which might be relevant, but the
actual information the user is looking for. This information is extracted from the
web pages found by the MIA spider module. So far, MIA can extract address
information. When the users’ search profile defines she is interested in Chinese
restaurants, MIA comes up with a list of addresses of Chinese restaurants in the
vicinity of the user.

The MIA search engine has to deal with three kind of information:

1. Search Profile

The user sets up a search profile. The search profile defines what the user is
looking for. At this point, this is a list of keywords, combined with some logi-
cal constraints. Examples for a search profile are Restaurants only Chinese, or
Sports not Squash.

2. Kind of Information

The kind of information the user is interested in. Currently, MIA can only retrieve
address information. When the user searches for Restaurants only Chinese, MIA
will come up with the addresses of Chinese restaurants. In further versions, we also
want to provide information about event descriptions, so the user can for example
get information about concerts, and time table information in order to provide the
user with temporal relevant informations, like bus schedules.

3. Geographical information

MIA focuses on mobile users. Its aim is to aid a user who is on the road. The
user will define her search profile, and the kind of information she is interested in
before she starts the trip. While on the road, she will send information about her
geographical position to the search engine. This information is used to guide the
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search. MIA will only search for Chinese restaurants in the vicinity of the user’s
current position.

Within MIA, the text classification agent is used to classify texts in regard to the
kind of information. Namely, it gives a confidence measure judging how likely it is that
the web page given to the classifier contains an address.

MIA could do without a classification subsystems. In this scenario, the web pages
collected by the spider subsystem are directly passed to the information extraction sub-
system, which tries to extract addresses from the web page. Putting a classification
subsystem in between the spidering and the extraction subsystem improves the perfor-
mance of the system, both in terms of its effectiveness and its efficiency:

e Efficiency

Extracting information from a web page is a very complex and time-consuming
task, even when it fails. More than 50% of the web pages gathered by the spider
agent do not contain any address. By sorting out these pages, we can speed up
MIA.

o Effectiveness

When trying to extract information from a database, we can use different methods.
Some of the methods give very accurate results (when they extract something, it is
most probable an address), but fail to extract an address from time to time. Other
methods are more “loose”. They do not disregard addresses, but from time to time
they extract something which is not an address at all. When the classifier provides
an confidence measure about how likely it is that a page contains an address, we
can select the method to use for extraction more accurately.

There are some more requirements: Since the web is huge, the sets of examples
and documents which have to be classified are very large. The text classifier shall be
able to deal with large datasets gracefully. MIA is a multi agent system. The various
components of MIA are independent from each other and communicate in well defined
languages via well defined communication interfaces. The classification system must be
able to interface with the other agents.

1.3. Email Classification Requirements

For classifying email, the classification program is invoked by the MDA (Message Delivery
Agent) when a new email arrives in the system. The classification system stores the
emails in different folders, depending on their classification, or forwards them to other
email addresses. This is useful in a lot of scenarios.

e Spam

UCE/UBE!, also known as Spam, can be bounced before it reaches the mailbox of
the user.

'"Unsolicited Commercial Email / Unsolicited Bulk Email
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e Forwarding email to the responsible person

Larger email systems usually have a set of more or less generic accounts which
receive a lot of traffic. These accounts might be abuse for email related to abuse
of the system, postmaster for email related to the mail system in general, info
to request information from the owner of the system, and support to ask support
questions. An automatic email classification system can forward mail which is ad-
dressed to a generic account to the person who is actually responsible for answering
a certain kind of request.

e Splitting up mail in appropriate folders

Nowadays, a lot of people receive large numbers of emails from various sources.
Examples for these sources include friends, coworkers and mailing lists. A lot of
users do not want to have all these messages in the same folder. For them, the text
classification system can sort the messages into different folders, depending on the
source or the topic of the message.

For these scenarios, it is not feasible to work with fixed sets of category. The classi-
fication system should be able to learn the categories from examples. This means, the
user provides it with a set of example emails whose categories are known, and it shall
learn from these examples how to classify new email. In the same way as the structural
information of HTML pages is used for the classification of web pages, the structural
information of emails should be used in this scenario.

As an email classification system, it should be so reliable that it can be used in
a production environment without losing emails due to bugs. We also want to have
a general purpose tool for text classification. The text classification system should be
usable as a desktop-application for the classification of all kinds of documents. The user
should be able to define categories and example sets of documents, and the system shall
be able to put new documents into these categories when it is asked to. For such a
system, two characteristics are most important: ease of use and flexibility. In order to
make the system simple to use, it should have additional user interfaces: A command
line interface, and a graphical user interface.

Flexibility can be achieved by various measures. One important feature is not to use
a single classification method, but provide a set of classification methods so the user can
choose the one most appropriate for her task. Beside providing a number of build-in
classification methods, new methods should be simple to integrate into the system.

The text classification system should not only be flexible in regard to the classifica-
tion method. Before a classification algorithm starts to work on a text, usually various
preprocessing steps are applied to the text: Special characters and stop-words are re-
moved, words are converted to all lower-case, .... The system should also be flexible in
the selection of these preprocessing steps.

One last requirement: Nobody wants to use non-free software. The system should be
free under the terms of the GPL [11].
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1.4. Conclusion: Special Requirements for MIC

Taking together all the requirement, the text classifier we are looking for shall fulfill the
following requirements:

e Can be used as a software agent (— chapter 6.3)

e Can deal with web pages as well as plain text (— chapter 3.2)

e Trainable on various tasks (— chapter 2.1)

e Can handle large datasets (— chapter 7)

e Learn from examples (— chapter 2.2.1)

e Make use of special structure of emails (— chapter 3.2)

e Reliable system (— chapter 7)

e CLI (— chapter 6.3)

e GUI (— chapter 6.2.1)

e Multiple classification methods (— chapters 2.4-2.6)

e Simple integration of new classification methods (— chapter 7.3.6)

e Flexible input data manipulation (— chapter 3)

e Free Software

The rest of this thesis shows how this requirements can be fulfilled. It is split in two
parts: The first part gives a formal definition of automatic classification. It shows how
the performance of common classification algorithms can be improved by exploiting the
structural information of texts, and ends with a comparison of the results of our improved
methods to those acquired by generic, off-the-shelf text classification systems. The sec-

ond part of the thesis describes the system MIC, the application we have developed for
automatic text classification.



2. Automatic Classification

The previous chapter describes the process of text classification, and its application to
various domains, in a rather informal way. This chapter gives a formal definition of
automatic classification. Based on this, the automatic classification methods used within
this thesis are introduced. The following chapter show how these general automatic
classification methods can be applied to text classification tasks.

2.1. Basic Concepts

We start the formal definitions by defining automatic classification and the related con-
cept of vector representation of input and output data. Classification is the process of
assigning objects to categories. This leads to a first definition of classification:

Definition 1 (Classification). Given a set of objects O, and a set of categories K, the
classification of an object from set O as belonging to a category from set K is defined as
a function between elements of the set of objects and elements of the set of categories:

flo) =k keK,0eO

We do not want to restrict our automatic classification methods to those which only
discriminate between a certain kind of objects. We are looking for generic classification
methods. For these methods, it does not matter if they are classifying texts or any
other kinds of objects. This requires a generic representation of the objects. In this
representation, the information necessary to discriminate between the objects must be
present. Commonly, one uses feature vectors to represent the relevant characteristics of
the objects. A feature vector is a vector of numbers. Each characteristic which might
contain information relevant for the classification task is represented as a numerical value.
We call the vector which corresponds to an object its feature vector representation. It is
defined in definition 2:

Definition 2 (Feature Vector Representation). Let o € O be an object from a set
of objects, and let vi...vy € R. We call the following function s the feature selection
function, and v =< v1,...,vy > the vector representation of object o:

s(o)=v v=<vq,...,vq >

18
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Since we are not dealing with text classification in this chapter, but with automatic
classification in general, we use an example which has nothing to do with text classifica-
tion at all. The example task is to classify a vehicle from a set of vehicles as either being
a bus, a truck, or a car. The knowledge about the vehicle is limited to three observations:

1. Is the maximum number of allowed passengers above 87
2. Does the vehicle weight more than 500 kg?
3. Does the vehicle have more than 2 axes?

In our example, one variable represents if the car is allowed to carry more than 8
persons, one variable represents if the car weights more than 500 kg, and one variable
represents if the car has more than 2 axes. This set of variables is combined to a feature
vector.

The transformation of categories into a numerical representation is straightforward.
We define a mapping between the set of categories and a subset of IN:

Definition 3 (Categories). Let K be the set of categories, and C = [1,|K|[] C IN. We
represent categories by a bijective function g with g(k) =c c€ CC N,k e K

In our example, the three categories could be represented by the integer interval [0, 2],
where a possible mapping would be g(“car”) = 0, g(“bus”) = 1, g(“truck”) = 2. Note
that the assignment of numbers to category is arbitrary. The only requirement is that
the function defines a isomorphic mapping. Therefore it has to be bijective.

By joining definitions 1 to 3, we can define automatic classification as the reduction
of a multi-valued input parameter to an output value:

Definition 4 (Automatic Classification). Let O be a set of objects, s a feature se-
lection function on these objects, and C a set of representations of categories. Automatic
classification is the process of reducing vector s(o) to c. The function f with

f(s(o)) =c o0e0,ceC

1s called a classifier.

Output Vectors

In a lot of applications, we do not have only one set of categories, but multiple sets. In
the vehicle example, we might not only want to categorize the vehicles according to their
types, but also according to their colors. In order to allow multiple classes of categories,
we extend the concept of categories. We group together an arbitrary number of category
variables into an output vector. Thus, the category variables themselves are called output
vector components. We extend definition 4 as follows in order to take the output vector
concept into consideration:
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Definition 5 (Output Vector). Let s be a feature selection function on a set of objects
O, let (Cq,...,Cy) be a set of n sets of categories, and let f1...f, be n classification
functions on s(o), with

fi(s(0))=c; 0€0,c;€C;,1<i<n

We can combine these classifiers to one classifier f whose domain is a vector
C=<cC1,...,Cn >,
f(s(o)) =¢C

Vector C is called an output vector.

Note that the use of the output vector format is a mere convenience to group together
more than one classification task. The classifiers themselves do not get more (or less)
powerful by the use of output vectors. In the rest of this part of the thesis, we are not
concerned with output vector anymore. We will come back to output vectors in the second
part of the thesis, where we describe the MIC system.

We have finished the definition of automatic classification. In the rest of this chapter,
we deal with the classification function f(o). First, a generic categorization of classifica-
tion methods is given. After that, we introduce the actual classification algorithms which
are used within this thesis.

2.2. Classification Methods

We can distinguish between two general approaches used for automatic classification:
trainable and non-trainable methods. For trainable methods, the set of categories, and
the classification task, are not fixed. Trainable methods are generic methods for clas-
sification. They are trained on actual data and categories in order to fulfill a certain
classification task. In the training process, examples are presented to the classifier. The
classifier extracts information about the structure of the data, and how to classify it,
from the training examples. In difference, in non-trainable methods the set of categories,
and the way how examples are assigned to categories, are fixed.

2.2.1. Trainable Methods

Within the area of trainable methods, we can distinguish even more. One important
distinction is between supervised and unsupervised learning techniques. In supervised
learning techniques, examples are presented to the classifier together with their classifi-
cations. In unsupervised learning, classifiers are presented with examples, but with no
information about the correct classifications of the examples. In the vehicle example,
the training set would consist of a set of vehicles. For unsupervised learning, this is all
information the classification algorithm gets. In supervised learning, it gets information
about the classification of the vehicles (i.e. whether a vehicle is a car, a bus, or a truck)
in the training set.
We define these two kinds of examples:
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Definition 6 (Unclassified Examples). Let s be a feature selection function on a set
of objects O. A subset E, of the set of all feature representations is called unclassified
examples.

B, ={s(m)lm € M\,M C O}

Definition 7 (Classified Examples, Reference Classifier). Let s be a feature selec-
tion function on a set of objects O. Let C be a set of categories, and let v be a classification
function on s(o). A subset E. of the set of tuples of feature representations and their
classifications is called classified examples.

Ec ={(s(m),r(s(m)))im € M,M C O}
We call v the reference classifier.
When we take learning into account, the classification function changes as follows:

Definition 8 (Learning Classifier). LetV be a set of vector representations of objects.
Let E be a set of (classified or unclassified) examples, and let C be a set of categories. A
learning classifier is defined as

fv,E)=c veV,ceC

Definition 9 (Supervised Learning, Unsupervised Learning). A learning classi-
fier f with an example set E is unsupervised learning, if E is a set of unclassified examples.

A learning classifier f with an example set E is supervised learning, if E is a set of
classified examples.

Another sophistication in the area of learning classifiers lies in the distinction be-
tween incremental learning classifiers, and non-incremental learning classifiers. In non-
incremental learning, all the training examples are presented in one batch. After the
classifier has adjusted itself to this training data, no more learning takes place. In incre-
mental learning, the classifier continues to learn even after the first classifications have
been performed. We can define incremental learning as refining a hypothesis. The goal
of the classification function f; is the approximation of the reference classifier function f;.
The current configuration of fi represents one hypothesis about the configuration of f..
When f; is confronted with example from f; which do not match its own classification,
it has to refine its hypothesis. So the process of incremental learning can be defined as
a search in the space of hypothesises. We will not go deeper into this, because in this
thesis, only non-incremental learning classifiers are considered.

The tasks we are focusing on in this thesis all require supervised learning classifiers.
Whether we are classifying web pages, emails or generic documents, we are looking for
a system which learns how to classify from examples. Therefore, we are most interested
in definition 7. The elements involved in classification based on supervised learning are
listed in table 2.1.
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T A set of texts that shall be classified
E A set of texts used for training

C A set of categories

s:TUE — V¢ A feature selection function
fe:Vi— C A reference classifier

f:(Vy,E,fe) = C A classification function

Table 2.1.: Elements of Learning Classifiers

For classifiers using supervised learning, the set of example documents is usually quite
large. The reliance on examples can be an advantage or a disadvantage of these methods,
depending on the situation. It can be an advantage, because learning methods are easily
adapted to new classification tasks: Usually, one only has to provide the classifier with
a different set of training documents in order to train it on a different task. Relying
on training data can be a disadvantage, because the process of training might be a
time consuming task. Classifiers using unsupervised learning have to discover similarities
between documents on their own.

Another disadvantage of learning methods is that most of them are based on statis-
tical analysis methods. A lot of these methods are black box methods. The statistical
computations that lead to the classification of a document are usually too complex for
a human to comprehend. We do not know why an object is assigned to the specific
category.

2.2.2. Non-trainable Methods

Trainable classifiers use machine learning methods to detect similarities within the set
of training examples from one category. Therefore, they are not limited to a specific
domain. Whenever there is an adequate feature selection function, a trainable classifier
can be trained to distinguish between the different classes of objects. This is different
for methods which do not rely on training. Non-trainable classifiers are hand-tailored
methods for specific tasks, usually based on ezpert systems. In the example of vehicle
classification, an expert system has information in the form of rules like “a vehicle with
more than two axes is a truck or a bus”, and “A vehicle which can carry more than 8
passengers is a bus”. The classifier classifies an object by drawing conclusions from these
rules. The advantages and disadvantages of non-trainable methods are inverse to those
of the trainable methods: Since the rules have to be hand-written, it is more difficult to
adapt a non-learning classifier to a new task. On the other hand, the classifier usually
does not only classify a document, it is also able to explain why a document is classified
as belonging into a specific category. It can show the rules that lead to the classification
of an object.

In this thesis, we will not be concerned with pure non-trainable methods. We will
show a method to augment trainable methods with additional non-trained domain knowl-
edge. We discuss our very natural way to combine trainable and non-trainable methods
next.
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2.2.3. Hybrid Methods

One goal of this thesis is to find methods for the combination of trainable and non-
trainable methods. The reason for this comes directly from the tasks we want to solve:
In some of the areas where we want to use a classification system, we have heuristics based
on non-trainable methods which allow us to classify objects quite well. By combining
these non-trainable methods with trainable methods, we expect the accuracy of the
classification to improve. We can also expect a classifier which is more adaptable and
flexible than a classifier using exclusively non-trainable methods.

Our solution to this problem is to interpret the results of the non-trainable methods as
additional input features to the trainable methods. This fits very well into the definitions
of the various components of a classification system laid out in this chapter. Definition 2
defines the input features representation of a text as a vector of real valued components.
Definition 3 defines a category as an integer value from an interval. Therefore, we can
use the output value of one classifier as a component of the input vector of another
classification algorithm:

Definition 10 (Combined Classifier, Hybrid Classifier). Let s1 and sy be feature
selection functions on a set of objects O. Let f1 be a classification function on sy, and let
$2(0) be the concatenation of T1(s1(0)) and s1(0O). We call the classification function
over s a combined classifier.

If the classification algorithms of f1 and f; are different, we call f; a hybrid classifier.

Now, all elements of an automatic classification system are defined. The rest of this
chapter deals with the automatic classification algorithms actually used. In subsequent
chapters, we show how texts are converted into vector representations, and evaluate the
performance of the algorithms on different text classification tasks.

2.3. Which Classification Methods to use?

There is a large number of classification algorithms for supervised learning classifiers
available. The second part of this thesis deals with MIC, the text classification system
developed for this thesis. One of the goals in the design of MIC was to be as flexible
as possible in regard to the classification algorithms. Still, we have to decide which
classification methods to use for our experiments. We base this decision on a comparison
of classification methods published in [42]. The following classification algorithms are
used: Neural Network, Naive Bayes, and Decision Tree.

Naive Bayes Classifiers are simple yet successful classification methods. They became
kind of reference classifiers to measure the performance of other classifiers on various data
sets. Naive Bayes Classifiers are used to get general information about the classifiability
of a task, and to get reference values to judge the performance of other classifiers.

Classifiers based on Neural Networks score high in the performance measure published
in [42]. Neural Networks are especially good at dealing with large sets of categories. For
a lot of classifiers, the performance degrades dramatically when the number of categories
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| Weight > 500 kg? | e

\
1
I

’Max. Passengers > 8? ‘ ’ Max. Passengers > 8?
y n y n\\\

Truck ‘ ’ Bus ‘ ’ Bus ‘ ’ Car

Figure 2.1.: Example of a Decision Tree for vehicle classification example. A vehicle
weighting 500 kg with a maximum of 5 passengers is classified as a car.

increases. Neural Networks do not have this weakness. This is an important character-
istic, because in at least one of the applications, the email classification task, we have to
deal with large sets of categories.

Decision Tree learning is the third classification algorithm we examine in this chapter.
In difference to Neural Networks and Naive Bayes classification, Decision Tree learning
does not use statistical methods to learn, but rules. This makes Decision Trees very well
suited for the evaluation of the classification process. For the statistical methods, we
can only draw vague conclusions about the interactions of the stochastic variables. A
Decision Tree gives us a clear set of rules for the classification. In a Decision Tree, a
human observers can see directly on which features the classification is based.

2.4. Decision Trees

The way Decision Trees are constructed will give us important insights in how the size
of the feature space can be reduced. Chapter 3 will explore why the technique used in
Decision Tree learning is important for input feature selection.

A Decision Tree uses the following method to classify an object: One feature is picked
from the input feature vector at a time. Depending on the value of this feature, the next
feature is picked. Again, its value is checked, and depending on the value of this feature,
another feature is picked. This process continues until the algorithm has checked enough
features to come up with a classification. The process of feature selection and checking,
which finally leads to a classification, can be shown graphically in a tree. This is done
in figure 2.1 for a downsized version our example problem: We want to classify a vehicle
with the features “does not weight more than 500 kg”, and “does not carry more than
8 passengers.” The classification algorithm starts at the top node of the tree. The first
feature checked for is if the vehicle weights more than 500 kg. Since it does not, the
algorithm proceeds to the right child of the top node. Here, it checks whether the vehicle
carries more than 8 passengers. It does not, so the algorithms chooses the right child
of the node. This is a leaf node. The associated classification is “car”, so the vehicle is
classified as a car.

More generally, in a Decision Tree, each node of the tree is associated with a feature.
The links between the nodes represent the possible values of the feature associated with
the parent node. Leaf nodes represent categories. Classification is done the following
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way: Start with the top-most node. Check the value of the feature associated with this
node. Follow the link annotated with the value of the feature. Loop until you reach
a leaf node. The classification associated with the leaf node is the classification of the
document.

The algorithm for the traversal of a Decision Tree is shown in algorithm 1.

Algorithm 1 Decision Tree Traversal
Require: object: The object to be classified
Ensure: classification: The classification of the object
current node = top node
while (not (current node.is leaf node)) do
current_feature = current _node.feature
object_feature value = object.feature value(current feature)
current _node = current _node.link(object feature value)
end while
classification = classification(current _node)

2.4.1. Construction of a Decision Tree

Decision Trees belong to the supervised learning methods. At this point, we examine how
a Decision Tree can be trained. We use the standard algorithm for Decision Tree learning
given in [27, page 403].

The objects which shall be classified are represented as feature vectors of cardinal-
ity . In the limited vehicle example, the feature vector has two variables. One is
“weight > 500 kg”, the second is “max. passengers > 8”. The domain of both vector
components is “yes”, or “no”. For each training example, these vector components have
specific values from their domains. There are three categories: “bus”, “car”, and “truck”.

A Decision Tree is constructed recursively. The vector component which gives the
most information about the classification of the objects is placed at the top most node.
The links from this node represent the possible values of this vector component. The
direct child nodes of the node are constructed in the same way the top most node is
constructed. At this point, the algorithm does not consider the whole set of objects, but
only those where the value of the input feature associated with the parent node has the
same value as the link.

In order to set this simple algorithm into action, we need a way to calculate the
information content of a set of objects. The information content of a dataset is the
inverse of its entropy'. It is defined in definition 11.

!The entropy of a random variable X is defined as (see e.g. [21]):

H(X)= ) P(x)log

XEA«

1
P(x)
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Definition 11 (Information Content). Given a set of categories cy,...cn, and the
probabilities for an object from the set of objects to belong to these categories as
P(c1),...,P(cn), the information content of this set of categories can be calculated by
the equation
Information_in_data = Z —P(x) x log, P(x)
X

See [27, pages 360).

In the vehicle classification example, the hypothesises are “the vehicle is a car” (cy),
“the vehicle is a bus” (c2), and “the vehicle is a truck” (c3). P(ci) is the probability
that for a randomly drawn vehicle from the set of vehicles hypothesis c; is true. It is
calculated as the number of vehicles for which c; is true (defined via a reference classifier
r and a feature selection function s), divided by the total number of vehicles

_ l{olo € O,7(s(0)) = ci}|
P(ci) = )

The idea of Decision Tree learning is to split the set of objects by the feature giving the
most information recursively. The information gain for each of the features is calculated
as given in definition 12:

For each value w of feature v, a subset of the set of objects is created. This subset
contains all the objects for which feature vector component v has value w. In the vehicle
example, when v is the feature vector “max. passengers > 8", two subsets are created.
One contains the objects for which “max. passengers > 8" is true, the other contains the
objects for which it is false. The information gain for this feature vector component is the
cumulated information content of the subsets, weighted by the sizes of the subsets. The
difference between the information content of this subset and the information content of
the original set is the information gain for this feature.

When this calculation is done for each feature, the feature which gives the most
information is selected. The most informative feature is associated with the node. Each
of the links is labeled with a possible value of the feature. The nodes connected to the
links are computed recursively. For each of the linked nodes, the set of texts is the subset
of original texts where the feature has the value associated with the link.

Definition 12 (Information Gain). Let 1(O) be the information contained in a set of
objects. Let Oy,—y be the subset of O for which feature v; has value w. The information
gain G(O,v;) when splitting I on feature v; is calculated as

‘OV]'=W‘
10|

G(O,v)=1(0)— >  I(Oy—n)-

wedom/(v;)

Algorithms 2 shows how a Decision Tree is constructed.

For a human observer, the classification process of a Decision Tree is very simple to
follow, as we see in figure 2.1 on page 24. The most important feature of the input data
is located at the top of the tree. The less important ones are located at the levels below.
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Algorithm 2 Algorithm for the Construction of a Decision Tree
Require: T: set of documents
Ensure: D: decision tree
D = new node
if (T.information content == 0) then
{There is no information left in the set of objects. We are done at this point.}
D.s_leaf node = true
{Since there is no information left, all objects in the belong to the same category.}
D.category = T.category
else
selected feature = most informative feature(T)
D feature = selected feature
for all (value = selected feature.domain) do
{For each possible value of the selected feature}
T subset = T.select by value(selected feature, value)
{Add childs by recursion over the subsets}
D.add_ child(recursion(T _subset), value)
end for
end if

Given an object and a Decision Tree, a human observer can tell why the algorithm
gives a certain classification to an object. This constitutes a significant difference to
the classification algorithm introduced next. Artificial Neural Networks operate on a
sub-symbolic level. They have no explicit representation of the classification process of
objects. This difference plays an important role in the next chapter, when we examine
the input feature selection function. From the way a Decision Tree is constructed, we can
get insights how to select features in a better way than standard methods do.

2.5. Neural Networks

Artificial Neural Networks are widely used methods for statistical modeling and auto-
matic classification. Neural Networks are very simple computational structures. Despite
their simple structure, ANNs are quite powerful. In a lot of fields Artificial Neural Net-
works belong to the top performing algorithms (see [42]). This is also true for automatic
text classification tasks. Therefore, we include Neural Networks into this thesis.

Artificial Neural Networks are computational models which imitate the behavior of
the natural neural networks we find in animals and men. Neural Networks are constructed
from two basic components: Nodes and Links. Nodes correspond to the cells in natural
neural networks, and links correspond to the axons. Nodes are interconnected via links.
The functional principle of Artificial Neural Networks is simple:

Every node has some amount of energy. When its energy exceeds a certain threshold,
the node fires. Its energy propagates via the links to all nodes connected to the firing
node, thus changing their energy levels. The computation done in a neuron is simple:
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+ exploxd)

Figure 2.2.: Graph of logistic function

e The current energy level at the input of the node equals the energy output levels of

the nodes which connect to the node, weighted by the strengths of the links. Let
Y1...Yj be nodes which connect to the node with the strengths by...bj. We get
equation 2.1 for the nodes input v.2

J
v="bo+ Z bjy; (2.1)
j=1

The output value w of the node is calculate from the input value by an activation
function: w = ¢(v). In natural neural networks, this is a threshold function.
When the input activation is above a certain threshold, the output activation is
toggled from zero to full activated. The disadvantage of threshold functions for
Artificial Neural Networks lies in the problem that threshold functions are not
differentiable at all points. Differentiability of the activation function at all points
is an essential criteria for finding a mathematical method to train a network, as
we will see later in this chapter. Therefore, Artificial Neural Networks do not use
threshold functions, but differential functions who are similar to threshold function.
These are usually sigmoid functions. Sigmoid functions are bounded, monotonic
increasing, and differentiable. A commonly used sigmoid function is the logistic
function:

1

= —— 2.2
T (22

g(v)

The graph of the logistic function is shown in figure 2.2.

%In this equation, by is the bias node. The bias node always has full activation. For a discussion of the

function of the bias node, see [33, page 36].
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Network topology

There are numerous variants of Artificial Neural Networks with different topological
orders available. For our automatic classification purposes, we use back propagation feed-
forward networks. Multi layer backpropagation networks consist of an input layer, where
the network receives the feature representation of the input data, and an output layer
which gives the results of the network’s calculations. In between these layers are a number
of hidden layers. It is has been shown in [13] that Neural Networks with one hidden layer
are computationally as powerful as networks with more than one hidden layer. Therefore
we will refrain from using more than one hidden layer. There are numerous ways how
the nodes can be connected. We will use a standard fully-connected feed forward network
without short-cuts. This means, every node in a layer is connected to every node in the
next layer, and to no other nodes.

Operating the Network

Figures 2.3 to 2.5 give an example of how the vehicle classification problem can be solved
by a neural network.? The number of input nodes of the network must be equivalent
to the arity of the feature vector, and the number of output nodes must match the
number of categories. In this example, the network is already trained for the vehicle
classification task. In the classification process, the value of each vector component
is layed on the corresponding input node. The input values of the hidden nodes are
calculated by equation 2.1, and the output activations of the nodes are calculated by
equation 2.2 (figure 2.4). The same is applied to the output nodes. Finally, the document
is assigned to the category whose output node has the highest output value (Winner Takes
All).

2.5.1. Training

A Neural Network has to be trained before it can be used for classification. There are
three different classes of training methods for Neural Networks: supervised learning meth-
ods, reinforcement learning methods, and unsupervised learning methods. In supervised
learning method, a set of preclassified training data is used to adjust the weights of the
network. After the training phase, the Neural Network can classify objects. When an
object is presented to the network, the networks determines the similarity of the object
to the categories of objects it had been trained on, and chooses the most similar cat-
egory. In reinforcement learning, the training phase is different. The Neural Network
does not get explicit information which class an object belongs to. The network tries to
classify the object, and gets information if the classification was correct or incorrect.
The third class of training methods are those that have no feedback at all. The network
is completely on its own in finding categories and classifying the data. In general, we can
expect best results with supervised learning techniques, followed by the results achieved

3Note that these figures contain some simplifications in order to reduce the complexity of the network
structure: There are only two input features and two categories (in difference to three in the original
example), and the network structure is simplified by ignoring the bias node.

4This has not to be binary information, it can also be a feedback to which degree a classification was
correct.



30 CHAPTER 2. AUTOMATIC CLASSIFICATION

> 8 Passengers > 2 Axis

Figure 2.3.: Initial Situation. The vehicle we want to classify has more than 8 passengers
and two axes. Therefore, the input node representing “more than 8 passen-
gers” gets an activation value of 1, and the node representing “more than two
axes” gets an activation value of 0.

> 8 Passengers > 2 Axis > 8 Passengers > 2 Axis

Figure 2.4.: The left graphic shows the network in the second step: The input values of
the hidden nodes are calculated as 1 x 0.3 + 0 x 0.4 for the left hidden node,
and 1 x —0.2 + 0 x 0.7 for the right hidden node. The right graphic shows
the network in the third step: Calculation of the output values of the hidden
nodes. The output values are calculated from the input values by the logistic

function g(v) = 1+]L'

€
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Car Bus
# /041

> 8 Passengers > 2 Axis > 8 Passengers > 2 Axis

Figure 2.5.: The left graphic shows the network in the fourth step: The input values
of the output nodes are calculated as 0.57 x —0.4 + 0.45 x 0.8 for the left
output node, and 0.57 x —0.3 + 0.45 x 0.5 for the right output node. The
right graphic shows the network in the fifth step: The output values of the
output nodes are calculated. The vehicle is classified as belonging to the
class which is associated with the output node with the highest activation.
In this example, it is classified as belonging in class “bus”.

by reinforcement techniques. Unsupervised learning techniques are mainly used when
one has no information about the number and kinds of categories. See for example [12].
The only kind of methods we are interested in are supervised learning techniques. Next,
we will examine a training algorithm for supervised learning networks.

During the training phase, the weights at the links between the nodes are adjusted.
Apparently, the results of the network’s calculations depend on the values of the con-
necting weights. How can these weights be trained? The training phase starts with
randomized weights. In each training step, the classification error for the training ex-
amples is calculated. With this information, a gradient descent in the error surface is
performed. In other words, from the experience gained so far, the weights are changed
to minimize the classification error on the training examples.

In order to adjust the weights, we have to know how much each of the weights b is
responsible for the network’s error E: %. This can be calculated by using the well known
chain rule [26, page 150] of calculus:

OE ©OE 09z O0v
R e 2.3
ob 09z 0Jv 0b (23)

In this equation, E is the node’s output error. b is the weight in question. z is the
output value of the node, t is the correct output value, and v is the node’s input. Each
term on the right side can be calculated fairly simple:
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E = %(z—t)z (2.4)
% -zt (2.5)
% — z.(1-2) (2.6)
g’—;’j _— 2.7)

In the last equation, yj is the output of the hidden nodes connected to this weight.
We get the following equation for the derivation of the error in respect to a specific
weight:

%z(z—t)-z-ﬂ—z)-yi (2.8)

This equation holds only for weights connecting hidden nodes to output nodes. For
the weights connecting input nodes to hidden nodes, the equation gets a bit more com-
plicate. For the output nodes, the target values t are part of the training data. The
target values for the hidden nodes are not directly available. They have to be calculated.
We start with the following equation, which is very similar to equation 2.3:

OE  oE dy ou

9a dy ou da

E is the node’s output error. a is the weight in question. y is the hidden node’s

output, and u is the hidden node’s input. The second and third link in this chain are

calculated the same way as for output nodes. The only difference lies in the first part

of the chain, the derivation of the error in respect to the hidden node’s output. This is

the hidden nodes part of the error of all output nodes. We calculate this number by the
chain rule again:

(2.9)

K
oE oE aZk avk
— = —_— 2.1
oy }; 0z Ovy Oy (2.10)
We get
A o
@ :Z(Zk—tk)-zk-” —2zi) - by (2.11)
k=1

Thus, the following equation calculates the error of a weight connecting an input node
to a hidden node:

k=1

dF K
= (Z(Zk_tk)'zk‘(]_zk)'bk) y-(1—vy) (2.12)
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Figure 2.6.: The squared error of the output nodes of a network (y-axis) over 5000 training

cycles (x-axis). The three graphs show the performance of networks with 5
(red), 10 (green), and 20 (blue) hidden nodes.

In every learning step n, each weight is changed by the inverse of its contribution to
the total error, weighted by a learning rate ¢:

oE
Gingl = Qin =5 —° (2.13)
in
oE
bint1 = bin— Fr € (2.14)
mn

The learning rate determines how fast the network’s weights are adjusted. A slow
learning rate leads to a slow learning process. If the learning rate is set too high, the
network does not learn at all.

There is no general rule to decide how many nodes in the hidden layer to use. With
too few nodes, the network will not learn well. With too many nodes, the learning
process might be slowed down, and there is a risk of overfitting. Overfitting means that
the Neural Network does not learn the general characteristics of the different categories,
but “memorizes” the training data, thus decreases the performance on data which it has
not seen in the training process. Figure 2.6 shows the influence of the number of hidden
nodes on the performance of a Neural Network. The graph shows the squared error of
the output nodes over 5000 cycles of training.> The error rate for Neural Networks with
only 5 or 10 hidden nodes stay high, because the number of hidden nodes is too small.

SFor this graphic, the newsgroup dataset from chapter 4.1.3 is trained with 65 input nodes, selected
from the ranking of a Decision Tree. The learning rate is set to 0.2.



34 CHAPTER 2. AUTOMATIC CLASSIFICATION

The latter two problems are not really problems within the context of our applications.
In general, speed of training is not an important aspect of the system at this point. In
all our applications (see chapter 1), the classifiers are trained offfine. They are trained
before they are used for real tasks. It is acceptable to have a longer training period once,
as long as the trained classifiers are fast. Therefore, the time of training does not really
matter. Overfitting is not a problem, because there is a very simple solution to this
problem: We evaluate the performance of the network during the training phase not on
the training data itself, but on a second dataset, on which the network is not trained. We
stop the training as soon as the performance of the network drops on this independent
dataset, thus preventing overfitting.

2.6. Naive Bayes Classifier

Classifying

Bayes classifiers are based on probability theory. The task of classifying an object is
understood as finding the most probable hypothesis, given some evidence. In the vehicle
example, the hypothesises are “the object is a car” (c1), “the object is a bus” (c2), and
“the object is a truck” (c3). Without looking at the actual object, we can only give
unconditional probabilities P(c;) for the hypothesises. The unconditional probability
P(cy) for a class ¢ gives the probability that a randomly drawn object from the set of
all objects belongs in class c;.

In our example, the feature vector has three components, vi, v, and v3. These
features tell about the weight of the vehicle (v1), the number of axes (v;) of the vehicle,
and the maximal number of passenger (v3) of the vehicle. For example, “the weight of
the vehicle is less than 500 kg” (wq), “it has only two axes” (wy), and “it can carry at
most 5 passengers” (w3). Now we calculate the mazimum a posteriori (MAP) hypothesis
given the evidence:

CMAP = argmax.ccP(cvi =wi AL A vy =wy) (2.15)

Training

The behavior of the classifier depends on the probability distributions of the random
variables. In order to train the classifier, we have to calculate the distribution of P(cvy =
w1 A...Avy =wy) from the set of training examples. We use Bayes Theorem for this
calculation. The definition of Bayes Theorem is given in definition 13.

Definition 13 (Bayes Theorem). Let h be a hypothesis, v =< v1,...vy > an input

feature vector, and D =< wq,...wy > the vector feature representation of an object.

P(vi=wi A...Avy =wylc) - P(c)
P(vi=wiA...Avy=wy)

Plcvi=wiA...Avy =wy,) =

When we apply Bayes Theorem to equation 2.15, we get:
P(vi =wi A...Avy, =wy/c) - P(c)
Pvi=wi A...Avy =wy)

CMAP = argmaxgcc (2.16)
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Since P(vi = w1 A... Avy, = wy) is the same for all hypothesises, we can simplify this
equation to

cMAaP = argmax.ccP(vi =wi A L. Avy =wnlc) - P(c) (2.17)

The calculation of the unconditional probability for a hypothesis is straightforward.
Given the total number of examples [Examples|, and examples;, the subset of Examples
for which hypothesis c; holds, P(c;) can be calculated as

_ |examples;|

P(¢ci) = ————— 2.18
(c5) Examples| (2.18)
P(vi = w1 A...Avy =wy/c) remains to be calculated. We could solve this equation

using the well known chain rule® of stochastic calculation:

Pvi=wiA...Avp=w,) = Pvi=w;) X (2.19)
P(v2 =wylvy =wq) x

P(vz =wzlvi =wj Avy =wy) x

Pvp =wWnlvi =wWi AL AV 1 =W 1)

This possibility is only theoretical, though, because we do not know the conditional
probabilities of the chain links. Things get a lot easier, when we assume a conditional
independence of vi...v,. For conditional independent variables, the following equation
holds:

P(a Ablc) = P(alc) - P(blc) (2.20)

Assuming conditional independence, P(vi =wi A... Avy, =wylc) can be calculated as
given in definition 14.

Definition 14 (Naive Bayes Classifier). Let h be a hypothesis, v =< Vv1,...,Vvn >
an input feature vector, and D =< wq,..., Wy > the vector feature representation of an
object.

P(Dlc) = [ [ P(vi =wilc) x P(c)

i=1

We call this Naive Bayes classification, because a conditional independence of the
features is usually not given. This is definitely the case for text classification. Still,
Naive Bayes classification works surprisingly well for a lot tasks (see [7]).

5Quite a lot of chain rules. .. This one is the chain rule of stochastic, not of calculus, as in the section
about Neural Networks. Also, this time the trick is not to use the chain rule.
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2.6.1. Calculating Feature Probabilities

In order to use the Naive Bayes classifier from definition 14, we have to calculate
P(vi = wijlc) for every possible value of every feature. This calculation is very simi-
lar to equation 2.18, where the unconditional probability of a category is calculated as
the number of examples in the category, divided by the total number of examples in all
categories.

Let Ec be the set of examples belonging in category c. For each feature v;, and for
each possible value wi, P(vi = wilc) can be calculated as the number of the examples
from E. for which v = wjy, divided by the total number of examples in E.. Equation 2.21
shows how to calculate the feature probability.

=<V1,...,Vn >€ Ec,vi =Wy 1
Plvi = wilc) = LEE=<V1 V“|E | o Vi = will + (2.21)
c

The addition of 1 to the numerator is necessary to avoid zero probabilities in the
cases where the numerator would be zero otherwise. A zero probability is not desirable,
because when inserted into the Naive Bayes classification formula given in definition 14,
it would result in zero probability for P(D|c). In this case, all documents in which a
feature value appears for which there had been no example in the training set, would be
assigned zero probability.

Example
Again, we use the vehicle classification problem as an example for the classification
method. It should be noted that Naive Bayes classifiers are not well suited for this
kind of examples: Naive Bayes classifiers deal with probabilities. Depending on the
characteristics of the object to be classified, it gets more or less probable that the object
belongs in a category. When classifying vehicles, the rules for classification are rather
strict. Therefore, it does make more sense to use a strictly rule based classifier like a
Decision Tree in such an area.

Back to the example. We assume the training data set yields the following probabil-
ities:

P(truck) = 0.2

P(bus) = 0.3

P(car) = 05

P(“< 500 kg” = false |truck) = 0.9

P(“< 500 kg” = true |truck) = 0.1

P(“> 2 axes” = false | truck) = 0.3

P(“> 2 axes” = true | truck) = 0.7
P(“> 8 passengers” = false | truck) = 0.85
P(“> 8 passengers” = true | truck) 0.15
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P(“< 500 kg” = false |bus) = 0.8
P(“< 500 kg” = true |bus) = 0.2
P(“> 2 axes” = false | bus) = 0.25
P(“> 2 axes” = true | bus) = 0.75
P(“> 8 passengers” = false | bus) = 0.05
P(“> 8 passengers” = true | bus) = 0.95
P(“< 500 kg” = false |car) = 0.4
P(“< 500 kg” = true |car) = 0.6
P(“> 2 axes” = false | car) = 0.9
P(“> 2 axes” = true | car) = 0.1
P(“> 8 passengers” = false | car) = 0.85
P(“> 8 passengers” = true | car) = 0.15

Now we want to classify the probability for a 2-axes vehicle weighting less than 500 kg
with maximum 5 passengers. We calculate the probabilities for the three hypothesises

“vehicle is a truck” (cy), “vehicle is a bus” (c2), and “vehicle is a car” (c3):

P(Dler) =TI Pvi=wiler)
= P(“< 500 kg” = true |truck)
x P(“> 2 axes” = false | truck)
x P(“> 8 passengers” = false | truck)
= 0.1x03x0.85
= 0.0255
P(Dlcz) = [T P(vi=wilc)
= P(“< 500 kg” = true |bus)
X  P(“> 2 axes” = false | bus)
x P(*> 8 passengers” = false | bus)
= 0.2x0.25x 0.05
= 0.0025
P(Dles) = i P(vi = wilcs)

= P(“< 500 kg” = true |car)

X P(“> 2 axes” = false | car)

x P(“> 8 passengers” = false | car)
= 0.6x0.9x0.85
= 0459

(2.22)

(2.23)

(2.24)

From equations 2.22 to 2.24 we get the highest probability for hypothesis c3. The

vehicle is a car.
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2.7. Summary

Three classification algorithms are used in this thesis: Decision Trees, Naive Bayes clas-
sifiers, and Neural Networks. Neural Networks and Naive Bayes Classifiers are chosen
because they belong to the top-performing classification algorithms. Additionally, Naive
Bayes Classifiers are kind of reference classifiers because of their simplicity and perfor-
mance. Decision Tree Classifiers are used because they follow a different paradigm than
the other two classifiers. They are rule based in difference to the statistical classifiers
Nuaive Bayes and Neural Networks. The construction of a Decision Tree will give us
insights into how to improve features selection.



3. Input Feature Selection

In this chapter, we show how the generic classification methods from the last chapter
can be applied to text classification problems. We define texrt and related concepts, and
show how a text can be converted into a feature vector. After a summary of commonly
used methods to represent texts as feature vectors, we introduce the methods specifically
devised for this thesis. Most of these special methods take advantage of the additional
structure information provided with HTML-, and email-documents.

3.1. Basic Concepts

We define the formal elements of text classification bottom-up by first defining word in
definition 15. Based on this, we define text in definition 16, and finally vector represen-
tation of a text in definition 17.

Definition 15 (Alphabet, Word). An alphabet X is a finite, non-empty set. The
elements of an alphabet are called letters.

A word w over X is a finite, possibly empty sequence of letters. w = (ay,...,an) is
also written as w = aj...an. The empty word, the word with 0 letters, is written as €.
w| is the length of word w, i.e. the number of letters of w. (cited from [4, page 27].)

Definition 16 (Text). A text t is an ordered set of words wy ... wn. We usually write
a text as the concatenation of the words. In the latter representation, the words are
separated from each other by one or more whitespace characters. Whitespace characters
are characters from an alphabet which is disjunct to the alphabet from which the words
are formed.

Automatic classification as defined in definition 4 on page 19 takes a vector
<WVi,...,vn > as its input. Therefore, the texts have to be transferred into their vector
representation before they can be classified.

Definition 17 (Vector Representation of a Text). Let t € T be a text from a set
of texts, let vi...vn € R, and let n € IN. We call the following function s the feature
selection function, and v =<v1,...,vn > the vector representation of the text:

s(t)=v teTv=<vy,...,vn >vi€R 1 <1<

39
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Thus the classification function f in regard to a set of categories C can be written as:

f(s(t)) =c teTs(t)=<vy,...,vpa>vi€ER1<i<n,neN,ceC (3.1)

3.1.1. Transforming Texts Into Features

Nearly all generic text classification methods which do not use sophisticated linguistic
methods use the same basic method to convert a text into a feature vector (see for
example [25, page 183]). Using the frequencies of the words appearing in the example
texts as features, s(t) is defined in the following way:

Definition 18 (Word-Feature Selection). Let ty,...,t, be the set of example texts.
Let W be the set of all distinct words in ti, and let W be the set of all distinct words in
all texts: W = U]Signwi-

Define a bijective function wo : [1,|W|] — W which gives an arbitrary, isomor-
phic mapping of [1,|W|] € IN to the words in the training set. Define another function
no: (i,[1,IW]]) = N which gives the frequency of a word wo™'(w),w € W, in text t;.

Let v be the feature vector with v =< vy,...Vvy, >. The values of the feature vector
components vj,1 <j <w for text t; is defined by function

v no(i,j)
A

Function wo has to be isomorphic, because in the calculation of the feature vectors,
we need a mapping from the words to their index numbers as well as mapping from the
index numbers to the words.

Example
We transfer the following text t into its vector representation:

In Ulm und um Ulm und um Ulm herum

We assume that the five distinct words in the text are indeed the only words in the
language. The isomorphic function wo can be defined as wo(1) = “In”, wo(2) = “Ulm”,
wo(3) = “und”, w(4) “um”, w(5) = “herum”. With this setting, no is de-
fined as no(1,wo '(“In”)) = 3, no(1,wo ' (“Ulm”)) = 3, no(1,wo '(“und”)) = 2,
no(1,wo~! (“um”)) =2, no(1,wo™! (“herum”)) = 1.

The vector feature representation of this text can now be calculated as

_ /mo(1,1) no(1,2) no(1,3) no(1,4) no(1,5)
st = < Wi W WA WA W >

_ <1 322 l>
“\99999

= (0.11111,0.0.33333,0.22222,0.22222,0.11111)
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Feature Reduction

This method of transferring a text into a feature vector is based on the assumption that
the category to which a text belongs is correlated to the relative frequency of the words in
the text. This is obviously a simplification. There are several commonly used methods to
make the feature representation of a text more accurate. These methods have in common
that they reduce the size of the feature vector, either by mapping more than one word to
one feature vector component, or by removing the feature vector components for certain
words. (See for example [19]).

There are a number of reasons for limiting the number of features. Mapping more
than one word onto one feature can make the representation more accurate. For example,
in natural languages, there are different spellings for a noun depending on its case. The
frequency of a noun is represented more adequately if there is only one feature vector
component for the noun, and not one feature vector component for every case of it.
Beside the better text-representation, there is a technical reason to reduce the number of
features: Using the frequencies of all words as features leads to an immense large number
of features, where most of the features (i.e. the words) have little or no significance for
classifying. Usually, a large set of features from which most have no meaning decreases
the accuracy of the classification. It can also make the computation of the classification
of a document significantly slower. For Naive Bayes classification, where the probability
of each feature is multiplied, the complexity of the calculation increases linear with the
number of features. For Neural Networks, each input node (representing one feature) is
connected to every node in the hidden layer. So with every feature added, the number
of calculation necessary increases by the number of hidden nodes!

The most common methods for feature space reduction are:

e Convert all words to lower case and remove special characters.

e Remove stop words. Stop words are words which appear frequently but provide
no information for classifications. Table 3.1 shows a little fragment of the list of
German stop words used in MIC.

e Define a minimal and maximal frequency for the words that shall be considered. If
a word appears less than the minimal number or more than the maximal number,
it is ignored. The effect of this filter is similar to the removal of stop words: We
assume that the most and the least frequent words do not contain any information.

e Do word stemming. Word stemming reduces words to their stems, thus mapping
the different spellings of a word depending on its case, temporal form, or mode to
a single feature.

The results in chapter 4 show that these common methods already improve the clas-
sification of the texts from various domains. To get better results, we have devised some
special methods for this thesis. We are especially interested in classifying emails and web
pages. These documents are not plain text, but also contain structural information.
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ab, aber, &hnlich, alle, allein, allem, aller, alles, allg, allgemein,
als, also, am, an, and, andere, anderes, auch, auf, aus, aufier, been,
bei, beim, besonders, bevor, bietet, bis, bzw, da, dabei, dadurch, dafiir,
daher, dann, daran, darauf, daraus, das, daf§, dass, davon, davor, dazu,
dem, den, denen, denn, dennoch,

Table 3.1.: Fragment of the list of German stop words

<html>
<head>
<title>A simple HTML page</title>
</head>
<body>
<h1>First Section</hi1>
<p>This is a minimal HTML page</p>
</body>
</html>

Figure 3.1.: A simple HTML page

3.2. Special Methods Devised for MIC

The goals of this thesis are two-folded: One goal is the development of an application
that fulfills the text classification requirements given in chapter 1. The second goal
is to improve existing text classification methods. We do not improve the automatic
classification algorithms themselves. Our improvements take place at the input feature
selection level. One aspect of the improvements is a better method to select the features
from the set of potential features. The second improvement is a way to preserve structural
information when converting texts into feature vectors.

3.2.1. Structured Text

In chapter 1, we state that one of our goals is the exploitation of the additional features
structured text has in difference to plain text. So far, we have talked about methods
to classify text files. When converting a text into an input vector, character sequences
separated by white spaces are treated as words. This is a sensible approach when we deal
with “pure” text. In the area we want to use our text classification system, we do not
always deal with plain texts. Two main areas of applications of the methods developed
in this thesis is the classification of email and web pages.

Email, as well as web pages, contain structural information. Structured text is not
simply an ordered set of words, but an ordered set of words with additional information
about the words. A typical example for a structured text is a HTML-page. Figure 3.1
shows a very simple example for a HTML-page. The words embraced in “<” and “>” are
tags. The word in between the braces is the name of the tag. If the name is preceded by
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From: bthomas@uni-koblenz.de
To: gbQ@uni-koblenz.de
Subject: Re: Dokumentation von MIA

klasse,
ich denke wir sollten aber einmal kurz uns gedanken machen wie und wo
wir das in den datei-baum einziehen ... nach dem essen?

Figure 3.2.: A typical email message

a “/” it is a closing tag, otherwise it is an opening tag. All words in between an opening
tag and a closing tag are affected by this tag. Thus, in figure 3.1, the first word, “A”, is
structured by the list of tags (html, head, title), and the word “minimal” is structured by
the tags (html, body, p). Note that these are ordered lists of structural tags. (html, body,
p) is different to (html, p, body).! Thus, we come to the following definition:

Definition 19 (Structured Text). In structured texts, each word is associated with
an ordered list of zero or more structure tags, which themselves are words on the same
or a different alphabet.

This definition does not only work for HTML pages, but also for other kinds of
structured texts. Next, we apply definition 19 to the simple email message shown in
figure 3.2. An email message has at least two distinct parts: A header and a body. We
can assume that the classification results will improve when these elements are treated
separately. In general, we can assume that the header information should have more
weight than the information in the body. For example, most classification schemes will
rely heavily on the sender and recipient of an email message. This information is given
in the header. Therefore the names appearing in the header should be treated separately
from the names in the body. In an email message, some of the structural tags are obvious
while others are not. We see the structural tags From:, To:, and Subject:. Additionally,
all of the upper parts of the email, the lines before the empty line, belong to the header
of the message, whereas all of the lines below the empty line belong to the body. By
applying definition 19, we get the representation shown in figure 3.3.

Definition 20 gives a method to convert between structured text and plain text.

Definition 20 (Transformation of Structured Text into Plain Text). Let t be a
structured text of N words together with their tags. Each word wy is affected by my tags
(8i1...Simy):

t=((s11,---,S1m;»W1)y .-+, (Sn1y -+ Snmn>Wn))
Let “_ 7 be a separator character which is not part of the alphabets of the words or the
tags. We can transform a structured text into a plain text by concatenating the structure
tags and the word of a tuple, where the elements are separated by the whitespace character:

t=(s11_..._Stm;_W1 ... Snl_ -+ _Snm,_Wn)
! Actually, the latter is a violation of the HTML specification.
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(((header, From:), bthomas@uni-koblenz.de)
((header, To:), gbQuni-koblenz.de)
((header, Subject:), Re:)

((header, Subject:), Dokumentation:)
((header, Subject:), von)

((header, Subject:), MIA)

((body), klasse,)

((body), ich)

((body), denke)

((body), wir)

Figure 3.3.: Definition 19 applied to the email message shown in figure 3.2

The method described in definition 20 converts between the structured format and
the plain format without information loss. We give an inductive proof:

Proof. Let w be a word together with its structural tags: vs = (s1,...,Sn, W).
n=0:
Both the structured version vs and the plain version v, are identical vy =
Vp = (W)
n—-n+l:
Vo, = (81,0, Sy, W), Vp, =(81_ ... _sn_W).

v5n+1 - vanr] :
Append _ after sy11 and insert it between s, _, and w. The result

isVp,,1 =(81_ ... _Sn_Sny1_W).

Vpnir = Vet
Separate element $;,1 from vy . $n41 can be uniquely identified
because according to definition 20,  is neither part of the alphabet
of the tags, nor part of the alphabet of the words. Insert element
Sn+1 as the last but one object in v, . This results in vs , =

(S],. e )STL)STL—H)W)'
|

The drawback of this method is the explosion of words and thus potential features.
Every configuration of feature tags and words gets its own feature. This contradicts all
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the methods to improve the feature selection function mentioned before in this chapter,
which reduce the number of features.

This is alleviated a bit by the methods to select only the most relevant features that
are shown next, but still there is no easy solution to this problem. In order to examine
the effects of the increased number of features when taking structure into consideration,
we run the text classification experiments in three different configurations:

e Treat structured text as plain text.

The simplest way to deal with the special data formats of HTML files and email
is to ignore the additional data and convert them into traditional text files. For
HTML pages this means to remove all tags from the documents. Emails are simply
treated as plain text, without considering the special meanings of the headers and
bodies of the message.

e Use only the tags on the outer level for classification.

As a compromise between the inclusion of structural features and the goal of not
ending up with too much features, we use only the outermost structure tags in
combination with the word as the input feature. The definition of this tag selection
method is given in definition 21.

e Use only the tags on the inner level for classification.

This is just like the last reduction method, but now we do not use the outermost
tags, but the innermost tags. It is defined in definition 22.

Definition 21 (Outermost Structure Text). Given a structured text t as defined in
definition 19 (page 43) we call u the m-outermost structure text, if every tags-word-tuple
(tagq,...,tagn,word) with m < n in t is replaced by (tagy,...,tagm,word) in u.

Definition 22 (Innermost Structure Text). Given a structured text t as defined in
definition 19 (page 43) we call u the m-innermost structure text, if every tags-word-tuple
(tagi,...,tagn,word) with m < n in t is replaced by (tagn_m=+1,...,tagn, word) in
u.

When we transform the email message from figure 3.3 (page 44), to the I-innermost
structure text, we get figure 3.4. When we transfer it to the I-outermost structure text,
we get figure 3.5.

The notion of m-innermost, and m-outermost structure text allows to reduce the size
of the vocabulary dramatically. Given a vocabulary of w words and t tags, where each
word is affected by x tags, the transformation from a structured to a plain text given
in definition 20 leads to a vocabulary size of [t|* x [w|, thus, it increases the size of the
vocabulary by factor [t|*. Definitions 22 and 21 reduce the size of the vocabulary for
m < x by a factor of [£|* ™.

Let’s consider an example: We have a text with 100 distinct words, each word is
structured by 3 tags. This means, the structured text consists of 100 tuples with four
components each: Three tags, and a word. We also assume all of the tags are distinct. If
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(((From:), bthomas@Quni-koblenz.de)
((To:), gbQuni-koblenz.de)
((Subject:), Re:)

((Subject:), Dokumentation:)
((Subject:), von)
((Subject:), MIA)

((body), klasse,)

((body), ich)

((body), denke)

((body) , wir)

Figure 3.4.: I-innermost text of figure 3.3

(((header), bthomas@uni-koblenz.de)
((header), gb@uni-koblenz.de)
((header), Re:)

((header), Dokumentation:)
((header), von)

((header), MIA)

((body), klasse,)

((body), ich)

((body), denke)

((body), wir)

Figure 3.5.: I-outermost text of figure 3.3
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we do not take the structural tags into consideration, the set of potential features has 100
elements; the words. The 1-innermost or 1-outermost structure text has 300 potential
features: 100 words x 3 tags. The full text with all structural information has 2700
potential features: 100 words x (3 tags)3. We see that the reduction of structured text to
1-innermost structured text or 1-outermost structured text provides a compromise between
keeping the vocabulary small on the one hand, and keeping structural information on
the other hand.

3.2.2. Limiting Features by Information Content

The large number of potential features is one of the problems of text classification. It
gets worse when we use the conversion from structured text into plain text given in the
last section. Various methods have been proposed for limiting the number of features.
One commonly used method, which already has been mentioned before, is to remove
the features representing words which appear most or least often.? We expect these
words to contribute only little to the classification task, i.e. we assume they contain
very little information. Looking for the words appearing most and least often is only
a heuristic method to filter out irrelevant words. A better method is to calculate the
information content of every word by definition 12 on page 26. This method also allows
us to tell exactly how many features we want to use. If we want n features, we take the
n words containing the most information. If we would just remove the most and least
frequent words, we can not choose the number of features so easily. We could choose
the frequency-borders in a way that we end up with exactly n features, but it is not
guaranteed that these features are chosen sensible for the text classification task. As a
matter of fact, by reducing the number of features this way, the classification algorithms
become very sensible to the number of features. In some areas they work fine, whereas
performance breaks down when the number of features drops below a certain number.
By choosing the n features containing the most information, the classifiers performance
degenerates more gracefully when the number of features is reduced.

This method of feature selection is commonly used, but it is still not optimal. We have
developed a better method for information selection. Feature selection based on feature
information content becomes non-optimal when there are more than two categories and
more than one feature. The reason for this is that the calculation of each potential
feature’s information content is independent of the other features. Let’s assume we have
to select two features from a larger set of potential features. We also assume within the
potential features, there are two features whose distribution over the set of examples
is exactly the same. Let’s further assume that these two potential features contain the
most information of all potential features. An algorithm which selects features based on
their information content will choose these two potential features as the features. This
is a non-optimal selection. Since the values of both features are identical, we get no
additional information from the second feature. The same information would be present
if we used only one of the features. (Which could be chosen randomly.)

*These method are for example proposed in [25, page 183]
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[
®
. =Car

®

=Bus

= Truck

Figure 3.6.: The set of vehicles.

A better choice would be to choose one of the most informative features, and then
do a recalculation which takes into consideration the information we got from the chosen
feature. For this calculation, we have to split the set of objects into those where the
most informative feature is present, and those where it is not present. We calculate the
most informative features from both sets. The information gain of these two features is
weighted by the number of objects. The result is the total information gain for these
potential features. When this is done for every potential feature, we choose from these
the one containing most information. This potential feature is the second feature. We
continue this process until we have selected as many features from the set of potential
features as we wanted.

This is exactly the same calculate that is done when constructing a Decision Tree.
Thus, in order to find the best features, we can construct a Decision Tree, and traverse
it, collecting the most informative features on the way. In the last chapter of this part
of the thesis, where we evaluate the performance of our text classification methods in
comparison to other methods, we show the performance of this feature selection method.

Example for Plain Information Selection
We come back to the vehicle classification task as an example. Let’s assume we have 24
vehicles: 5 cars, 9 busses, and 10 trucks. The categories are “car” (c1), “bus” (c2), and
“truck” (c3). This is shown in figure 3.6. The features are “> 500 kg” (v1), “> 8 pas-
sengers” (v2), and “> 2 axes” (v3). Each of the cars, busses, and trucks has the input
feature characteristics shown in table 3.2. We want to select the two most informative
features from the set of three features. We do this selection by selection on the “plain”
information of the features as well as by the Decision Tree method. We will show that
the Decision Tree method reduces the information in the set of objects better than the
“plain” selection method. This means that the features selected by the Decision Tree
method are a better representation for discriminating between the sets of objects.

We start with the “plain” information selection method. The information contained




3.2. SPECIAL METHODS DEVISED FOR MIC 49

> 500 kg (v1) | > 8 passengers (v2) | > 2 axes (v3)
Car (c1) No No No
Bus (c2) No Yes No
Truck (c3) Yes No Yes

Table 3.2.: Input features of the objects in the example

in the set of objects D is calculated as

I(D) = Y7,P(c;) x—log(P(cy))
P 25—4 X —log %
+ P % X —log % (3.2)
+ P(32) x —log (2

= 046

We calculate the information of the subsets created by splitting the total set of objects
in subset Dy, —trye, for which v; = true, and in subset D,,—¢q1se, for which v; = false.
We start with I(Dy, —true):

I(Dyy—true) = Yoy

Plc:
P % x —log %
+ P % x —log % (3.3)
+ P(}—O) X—log(}—o)
=0
I(Dy,—true) = Y i1 P(civ2 =true) x —log(P(civ; = true))
= P <g) x —log <g)
+ P(%)x—log(% (3.4)
+ P g x —log g
=0

I(Dy,—true) = Y 34 P(civs = true) x —log(P(ci/vs = true))
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Now, we calculate the information content of the document sets Dy, —¢q1se-
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I(Dv1 =false) =

I(sz=false)

I(DV3=false) = Zf:

(cilvi = false) x —log(P(cilvi = false))
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cilvs = false) x —log(P(cilvz = false))
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+ P (&) x—log (&)
= 0.2830543

Finally, we can calculate the information content for splitting on each feature v;:

1
I(D\q:true /\Dv1 =false) = ﬁ ' (|Dv1=tme| ' I(Dv1 =tme) (3-9)

‘HDW =false| - I(Dv1 =false))

1
= 55 (10-0+14-0.2830543)

= 0.1722939

1

I(sz=true /\szzfalse) = ﬁ : (‘sz=t‘rue‘ ' I(sz=true) (3-10)

+|sz:false‘ - I(sz:false))

1
= 55 (9:0+15-02764346)

= 0.1802834

1
I(DV3=true /\DV3=false) = ﬁ : (‘DV3=’CTLL€‘ ' I(DV3='£TLL8) (3-11)
+|DV3=false‘ . I(DV3=false))

1
= 55 -(10-0+14-0.2830543)

= 0.1722939
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Figure 3.7.: The set of vehicles after splitting on vy.

We select the feature which reduces most information from the set of objects In this
case, both for splitting on feature v; and v3, only 0.1722939 bit information is left in the
set of objects. For vy, 0.1802834 bit information is left in the set of objects. Therefore,
“plain” information selection selects features v; and v3. Figure 3.7 shows the set of
vehicles after it has been split on feature vi. Next, we calculate the information left in
the set of documents after they have been split on the values of vy and vs:

I(Dv1 =true A\ Dv1 =false AN DV3:tT’U.€ AN DV3=false) =

Dy, =f‘1“|g‘\”3:f““e| X I(Dy, =fatseAvs=false)

\DV1:tru|%\|V3:quse| % I(Dy, —trueAvs—false) (3.12)
Dy, :falls];/l\%:t”el X I(Dy, —falseAvs=true)

\D\q :tru“ej/l\\gztrue‘ % I(DW =true/\V3=tTU-e)

Since for all objects from the set of objects, vi and v3 have identical values, equa-
tion 3.12 can be reduced to

I(Dw =true AN Dv1 =false N DV3=t'rue AN DV3=false) =

Dy, =fatsel
1\Df| : X I(Dv1=false) (313)
Dv =true
+ Pl 1Dy, Zrue)

Equation 3.13 is identicial to equation 3.9. So the information left when splitting
on vy and v3 is 0.1722939, which is the same information content as splitting on vi or
v3 alone. We get no further information by using a second feature. This is shown in
figure 3.8.

Example for Selection by Decision Tree
Now, we use the Decision Tree approach to select the features. The calculation to de-
termine the first feature is the same as in “plain” information selection. Since vy and v3
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Figure 3.8.: The set of vehicles after splitting on vi and v3.

reduce the information to the same value, we can choose one of them. We choose v;. In
order to determine the second parameter, we calculate the best feature for the subsets
Dy, =true and Dy, —fq1se of D which are created by splitting on vy. I(Dy,—¢true) has been
calculated in equation 3.3. It is 0. All objects for which v = true belong to the same
category. There is no information left in this set of objects. The information in the set
of objects for which vi = false has been calculated in equation 3.6. It is 0.2830543.
We calculate how much information is reduced by splitting this set on feature v, or vs.
For v3, this has already been calculated in equations 3.12 and 3.13: We gain no further

information by splitting on v3. For vy, the information gain is

I(Dv1 =false/\vz=true) = Z

_I_
_I_
=0

I(D\q =false/\vz=false) = Z

=0

13=] P(Ci|Dv1 =false/\vz=true)
X — log(P(Ci|Dv1 =false/\vz=t'rue))
P($) x —log()
P(5) x —log(s)
0 0
P(§) X —108(6)
3:] P(Ci|Dv1 =false/\vz=false)
P(2) x —log(2)
P(2) x —log(?)
P(2) x —log(2)

X — log(P(Ci|Dv1 :false/\vz:false))

(3.14)

(3.15)

Figure 3.9 shows the set of vehicles after splitting on v; and v,. In none of the sets is
any information left. By using the features from the Decision Tree selection method,vq




3.2. SPECIAL METHODS DEVISED FOR MIC

53

Vi = true

vy =fdse

Vo = true

v, =fdse
®

®

o ©°
® O

® o ©®

Vo = true

v, = fase

=Car

=Bus

= Truck

Figure 3.9.: The set of vehicles after splitting on vi and v,.

and v, we were able to reduce the information content in the subsets to 0. When using
the features from the “plain” information selection method, vy, and vz, there is 0.1722939
bit information left in the subsets. Therefore, Decision Tree feature selection provides us
with better features.

In the next chapter, the performance of the methods shown in this chapter, in com-
bination with the classification algorithms from chapter 2, is measured on different data

sets.




4. Performance Evaluation

In this chapter, we evaluate the performance of the classification algorithms from chap-
ter 2 in combination with the input feature selection methods from chapter 3.

The documents used for the evaluation of the classifiers stem from two different
sources. One part is taken directly from the applications in which we want to use the
classification system. These are real world datasets which give direct information about
the applicability of the classifiers to the target domains. The second source of data
are publicly available datasets which serve as a general measure for the quality of text
classification systems. Results are compared to the performance of existing third party
systems.

Two indicators are commonly used in the performance evaluation of classification
systems; the recall rate, and the precision. The recall rate tells how many of the objects
falling into one of the categories have been identified. The precision rate tells how many
of the objects which are recalled have been classified correctly. Recall and Precision are
defined below.

Definition 23 (Recall). Let D be a set of feature representations of texts. Let Dy C D
be a subset for which the reference classifier v defines a classification. Let Dy C D be
a subset for which the test classifier t gives a classification. The recall rate of the test
classifier is defined as

D¢l
Dy

recall =

Definition 24 (Precision). Let i be the test classifier, fr the reference classifier, and
Dy the set of feature representations of texts for which the test classifier gives a classifi-
cation. We define the precision rate of fi as

{tit € D, fe(t) = (1)}
Dy

precision =

In our implementation of the classification algorithms, the recall rate is always 100%.
The classifiers always assign a category to a text. There is no way that our classifiers
refuse to classify a text. For this reason, we show only the precision rates in the results.

o4
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4.1. Documents to Classify
4.1.1. MIA

One of the areas of practical applications for our text classification system is the MIA-
project, developed at the University Koblenz Artificial Intelligence Research Group. In
chapter 1.2, we explained the usage of a classifier within the MIA system. Here, the
classification task is to tell if web pages contain (real world) addresses. The categories
are “page contains an address” and “page does not contain an address”. Getting evaluation
data for the web page classification task is straight forward. We collect data from the
real, running MIA application by grabbing the results from the spider agent.

We searched for the 21 cities Bayreuth, Halle, Miinchen, Berlin, Hamburg, Pots-
dam, Bonn, Rostock, Chemnitz, Kiel, Saarbriicken, Dortmund, Koblenz, Stuttgart, Er-
furt, K6ln, Wiesbaden, Essen, Leipzig, Frankfurt and Mainz, and for 9 topics: “Sport”,
“Restaurants”, “Kultur” (culture), “Hotels”, “Bibliotheken” (libraries), “Bahnhofe” (train
stations), “Zeitungen” (newspapers), “Vereine” (associations/clubs) and “Firmen” (com-
panies). The MIA spider agent collected 973 pages. From these 973 pages, 347 pages
(35.66%) contain an address, and 626 pages (64.34%) do not contain an address. Ta-
ble 4.1 shows some more details about the pages.

All classification algorithms are supervised learning algorithms. In order to be trained,
they need the correct classifications of the web pages. Classifying all pages manually
is a monotonous, time-consuming and error-prone task. In order to avoid it, we use a
highly accurate classifier as the reference classifier. A non-trainable classifier with special
domain knowledge is used. It has access to a database containing the zip codes and names
of German cities. When a web page contains the zip code of a city followed by its name,
it is classified as containing an address. We assume that the classification of the reference
classifier is always correct, i.e. we do not take noise into consideration.

4.1.2. Emails

Chapter 1.3 shows the context of the email classification scenario. The reason for opti-
mizing the system on email classification was a proposed cooperation with an ISP. An ISP
has a number of generic support accounts with names like abuse, admin, postmaster,
info and root. These accounts receive hundred of email messages a day. This ISP
wants to forward email addressed to its support accounts automatically to the person
responsible for the specific problem mentioned in the email.

We do not have access to original data. Therefore, we use a dataset from a different
area of email classification to test the performance of MIC. This is the personal email
archive of the supervisor of this thesis. The original dataset contains 2250 emails, sorted
in 37 categories. The categories correspond to the topics of the emails. With this
dataset, we evaluate how well a text classification system can aid a user in filing her
personal correspondence. The email dataset poses some problems. One problem is the
large variety in the number of emails in each of the categories. While one category
contains only 7 emails, others contain up to 494 emails. Additionally, the categories are
not always clearly distinguishable. There are two categories covering the same topic.
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City Pages Contains City Pages Contains
Collected | Addresses? Collected | Addresses?
Yes No Yes No
Bayreuth 37 6 31 || Koblenz 63 32 31
Berlin 39 8 31 || Kdln 34 3 31
Bonn 39 8 31 || Leipzig 25 2 23
Chemnitz 32 4 28 || Mainz 45 14 31
Dortmund 34 3 31 || Miinchen 47 16 31
Erfurt 57 26 31 || Potsdam 42 11 31
Essen 35 4 31 || Rostock 67 36 31
Frankfurt 34 3 31 || Saarbriicken 32 1 31
Halle 18 1 17 || Stuttgart 71 40 31
Hamburg 112 81 31 || Wiesbaden 72 41 31
Kiel 38 7 31

Table 4.1.: “Pages Collected” is the total number of pages collected for the city. “Contains
Address” and “Does not Contain an Address” are the number of pages that
do (not) contain an address.

The only difference between the two categories is that one contains older messages, and
the other contains recent messages. We can not be sure that ambiguous cases, where
an email falls in between two categories, or fits in more than one category, have been
handled in a consistent way. Additionally, we do not know if the manual classification
was always correct in the first place.

Beside the full dataset, we use a second, smaller subset of the emails. The smaller
dataset contains 363 emails in 8 categories. We do this, because we want to compare
the performance of our classification system against other systems. One of these is SER-
personalBrain. SERpersonalBrain is a commercial software package. The only version
available for no charge supports only a limited set of categories and documents. It is
limited to 10 categories, and 100 documents per category.

Since these are non-anonymized personal mails, we can not provide this dataset to
the public. Therefore, it is not included on the CD.

4.1.3. Newsgroups

In order to compare the performance of our classification algorithms to other classifiers,
we run tests on a dataset from the Internet which is commonly used for the comparison
of text classification algorithms.

The bow library [24] comes with a large example dataset of articles from newsgroups.
Articles from 20 newsgroups have been collected: alt.atheism, comp.graphics,
comp.os.ms-windows.misc, comp.sys.ibm.pc.hardware, comp.sys.mac.hardware,
comp.windows.x, misc.forsale, rec.autos, rec.motorcycles, rec.sport.baseball,
rec.sport.hockey, sci.crypt, sci.electronics, sci.med, sci.space,
soc.religion.christian, talk.politics.guns, talk.politics.mideast,
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talk.politics.misc, and talk.religion.misc. 1000 articles have been collected from
each of the newsgroups. We use a striped down version of this dataset, which is also
available on the Internet [23]. It contains 100 messages in each of the newsgroups,
totaling 2000 messages.

4.2. Naive Bayes Classifier for Texts

In chapter 2.6.1, the calculation of the feature probabilities for the Naive Bayes classifier
is explained. The calculation method from chapter 2.6.1 assumes binary features: Either
a feature is present in the representation of an object, or it is not present. However, the
text representation introduced in chapter 3 is richer. The feature vector components do
not simply indicate if a word is present or not. They give the frequency of a word in
the text. The algorithm for the calculation of feature probabilities can be adapted to
make use of the richer representation. For each distinct word wy in at least one of the
texts in the training dataset, we calculate the probabilities of a randomly drawn word
from class cy being word wy, P(wx/cy). This is calculated as the total number of words
Wy in texts of class cy, divided by the total number of words in all texts. 1 is added
to the numerator in order to avoid zero probabilities in the cases where the word does
not appear in any document of class cy. Zero probabilities are not desirable, because
in case a testing document contains one of the words which have zero probability, the
probability of the text belonging in the category would become zero, too.

Definition 25 (Naive Bayes Word Probabilities). Let D be a set of texts, and ¢ a
category. Let . be the total number of distinct words in D, and let w be a word. Let [w|
be the total number of words w in texts from category c. The probability for a randomly
word drawn from category ¢ to be word w is calculated as

. Wel + 1

e =Ton

4.3. Feature Selection

Chapter 3 shows the input feature selection methods used in this thesis. We can distin-
guish between four kinds of parameters:

e Parameters restricting the number of input features.

e Parameters defining how input features are selected from a larger set of potential
features.

e Parameters influencing if and how more than one word is mapped to one (potential)
input feature.

e Parameters influencing the way how structural information is presented to the
classifier.
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Setting the Number of Input Features

The number of input features influences the classification in two ways: When we use
too few input features, the classifier might not be able to perform well because of lack of
information. If we use too much input features, the classification algorithm might overfit.
Chapter 4.5.1 examines the influence of the number of input features. In the simulations
in chapters 4.5.2 to 4.5.4, the number of input features is equal to the number of nodes
in the Decision Tree. There are as many features used as necessary to contain all the
information from the training dataset.

Selecting Input Features

Two methods are used to select the features. The first method is the information content
of the words. The words containing most information are selected as input features. The
second method does not use the “plain” information content of the words, but the infor-
mation content of the words in relation to the other words selected as input features. The
second method uses a Decision Tree to find the most informative features. This method
is described in chapter 3.2.2. A comparison of both methods is shown in chapter 4.5.1. In
the following runs of the classification system, the advanced decision tree based feature
selection method is used.

Improved Feature Selection

These are the generic methods to improve input feature selection described in chap-
ter 3.1.1. In chapters 4.5.2 to 4.5.4, all runs are performed with plain feature selection.
Each word is mapped to one (potential) input feature, and with improved feature selec-
tion using the following methods:

e Convert text to lower case
This is one of the general methods to reduce the size of the feature space. All words
are converted to lower case.

e Convert quoted printable characters

The quoted printable format allows to transfer 8 bit characters (like German um-
lauts) with a 7 bit encoding. This option reverts the quoted printable characters
to their original 8 bit representation.

e Convert HTML special characters

HTML also has a special format to convert 8 bit characters in 7 bit format (See [3]).
Just like for quoted printable characters in emails, this option converts HTML
escaped characters back to their original form.

e Remove special characters from text

This is also a generic method for feature-reduction: All non-alphanumeric char-
acters remaining after quoted printable and HTML special characters have been
converted are removed.

e Remove stop words
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Remove stop words. Right now, we use a list of German stop words which is
partially shown in table 3.1 on page 42.

Transferring Structure Into Features

One aim of this thesis is to extend text classification algorithms for utilizing structural
data. The example datasets vary in the kinds of structural information they provide.
The datasets of email messages and newsgroup articles are very similar in their structure.
Email messages, as well as news articles, consists of a header and a body. The header
contains additional structural elements. These elements are (among others) the name
of the sender, the name of the receiver, a subject line, and references to other emails /
newsgroup articles. Since the proliferation of the MIME-standard for emails (see [6]),
emails do not only contain plain text, but often also all kinds of binary attachments.
These attachments usually do not contribute to the classification process, because the
“word strings” in them are rather meaningless, and since the binary parts are usually a
lot larger than the text parts of a message, the classification process can be distracted
from those words which are really important. Even more important, the parsing of large
binary parts of a message takes a lot of time. Therefore, binary parts are removed from
emails. This option is only of interest if we are classifying emails.

The MIA dataset differs from the other datasets. A HTML page contains a header
and a body, too, but in difference to the other datasets, the header section of a HTML
document contains less information and is not as rigid structured as the headers of email
messages and newsgroup articles. In difference to the other datasets, the body, i.e. the
actual text, of a HTML document contains structure tags, too.

Definitions 21 and 22 on page 45 define the n-innermost (-outermost) text. Each
word is associated with the n innermost (outermost) tags affecting it. We evaluate the
performance of the classifiers on the document sets for n = 1 and n = 2 both for the
innermost and outermost structure text.

4.4, Existing Systems

The performance of our methods is compared to the performance of already existing
systems for automatic text classification. An extensive list of text classification system is
available from the web pages of CALD (Center for Automated Learning and Discovery) at
CMU [22]. We have examined those systems from the list which are available for free (or
at least free demo versions are downloadable). Other systems (like CLEMENTINE [34])
have not been taken into consideration. These systems are:

RoC: The Robust Bayesian Classifier

RoC [30] has been developed at the Knowledge Media Institute of Open University (UK).
It is a Windows 9x/NT desktop software which allows the classification of texts via a
GUI. The only algorithm supported by RoC is the Robust Bayesian Classifier. RoC is
royalty free for non-commercial use. Source code is not available.
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MLC++

MLC+H+ [32] is a C++-library developed at Stanford University and SGI for supervised
automatic classification. MLC—++ is provided in source code, but the license allows to
use it only for research projects. It is based on the LEDA [9] library which provides
additional data types. LEDA is commercial software. We had not been able to compile
MLC-++, and there are no binary versions available.

SERpersonalBrain V01.02

SERpersonalBrain is a commercial product from SER Systems AG. A demo version
is available at [31]. SERpersonalBrain is a text classification and retrieval system for
Desktop-PC users. Via graphical user interface, the user can give examples for docu-
ment classes to the system. After a training phase, SERpersonalBrain categorizes new
documents according to the training data. The classification method is fixed. No infor-
mation is given about the classification method used. The demo-version is limited to 10
categories and 100 documents per category.

Rainbow

Rainbow is a text classification frontend for the bow library. The bow library [24] has been
developed by Andrew Kachites McCallum from the Center for Automated Learning and
Discovery at Carnegie Mellon University. Bow is a library for statistical text analysis,
language modeling and information retrieval programs. Rainbow is a command-line
program supporting text classification. Rainbow supports multiple text classification
algorithms and several ways to manipulate the input data. Rainbow is free software. For
the large set of text classification methods available, and its ease of use, Rainbow will
serve as a reference classification system when we evaluate the results of our methods.

svlight [14] is a project originally developed at University of Dortmund, and now hosted
at GMD. This command-line program implements Support Vector Machines (SVMs).

We did not include SVMﬁghtinto the performance comparison, because Support Vector
Machine classification is one of the classification algorithms provided by Rainbow, too.

In chapter 1 we formulated a number of requirements for a text classification system
which can be used for our classification tasks. Table 4.2 shows how well the various
already existing classifiers fit our needs. The evaluation of existing text classification
systems leads to the conclusion, that we have to develop a new system. This is MIC
(“MIA Classifier”). MIC fulfills all of the requirements from table 4.2. The technical
aspects of MIC are described in the second part of this thesis. Although the existing
text classification systems can not be used for our purposes, we do use them to compare
the performance of our improved classification methods to the results produced by these
classifiers.
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RoC | MLC++ | SER | svM#P% | Rainbow

Can be used as a software agent
Trainable on various tasks

Learn from examples

Make use of emails & HTML pages
CLI

GUI

Multiple classification methods
Extensible

Flexible input data manipulation
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Table 4.2.: Overview: Capabilities of existing text classification systems

4.5. Results

4.5.1. Restricting the Number of Input Features

First, we examine the parameters influencing the number of input features. We use the
full email dataset in combination with standard feature selection. The experiments are
run with the Naive Bayes classification algorithms. The number of input features is varied
between 5 and 50. In one set of experiments, the features are extracted from a Decision
Tree. In the other set, the “plain” information content of the words is used to decide
which of the potential features to use. These methods are described in chapter 3.2.2.
The precision of the classification algorithms is shown in figure 4.1. The figure shows
that input feature selection based on a Decision Tree needs about 5 input features less,
in order to achieve the same precision. We also see for both feature selection mechanisms
the deterring effect when too many features are used. Performance decreases when a
certain number of features is exceeded. The reason for this deterioration is the same as
for overfitting of a Neural Network (see chapter 2.5): By adding too much features, the
algorithm gets distracted from the features which really contain the information relevant
for the classification task. It turns to features which have no relevance for the real
classification task, but coincidently correlate with some of the categories in the training
dataset.

4.5.2. MIA Dataset

Table 4.3 shows the performance of the different algorithms and feature selection methods
on the MIA dataset. For the Neural Network classifier, we see how the inclusion of
structural information improves the classification process. While its accuracy is only
73.8758 % when not using structural information, the classification algorithm achieves
between 84.7966 % and 87.5803 % when including structural information.

It is surprising that for the Naive Bayes classifier, the standard feature selection
performs better than all the improved feature selection methods. We see this behavior
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Figure 4.1.: Classification precision of a Naive Bayes classifier using 5-50 input features.
The red line shows the performance of a classifier using plain information
content to select features, the green line shows a classifier using Decision
Tree based information content to select features. The data for this figure
can be found on the CD in directory data/results/nr_input_features/.

for no other classifier. For an analysis of it, we have a look at table 4.4. It shows the
most informative words used by standard feature selection, by improved feature selection
(see page 58) and by 2-outermost feature selection. The most informative word list from
the improved feature selection shows that the algorithm has not been too successful in
finding generic features to identify address information. This is not a surprise, because
the feature selection mechanism only counts the frequency of words.

It is quite obvious why “fax” was selected as the most informative word, because
in a typical address information, a fax-number is included very often. The third most
informative word, “040” contains less information, because it is more specific: “040” is the
telephone area code of Hamburg. Again, a phone number is usually part of an address,
but this feature identifies only addresses in Hamburg. The second most informative word,
“blind”, is clearly a wrong generalization. It has been selected, because in the training
data, a lot of the pages containing an address have been created by the same company.
This company uses images named “blind.gif” on their pages. By choosing this keyword,
the algorithm has only learned that web pages designed by this company usually contain
address information. The same is true for the words “gmbh<br>", “kcs”, and “info@kcs”,
because the name of said company is “KCS GmbH”. For all other potential features, like
city names, the algorithm would need advanced linguistic techniques, in order to know
that a word is the name of a city.

The advanced feature selection method, which takes the structure of the web page
into consideration (see page 58), leads to a somewhat better feature selection. The most
informative word list shows that this selection scheme gives better features: Beside the
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Naive Bayes | Decision Tree | Neural Network
Standard Feature Selection 80.5139% 87.152% 84.7966%
Improved Feature Selection 84.3683% 87.7944% 73.8758%
1-Innermost Tags 83.5118% 84.7966% 86.5096%
2-Innermost Tags 85.2248% 86.9379% 84.7966%
1-Outermost Tags 82.0128% 89.2934% 86.0814%
2-Outermost Tags 83.2976% 89.2934% 87.5803%

Table 4.3.: MIC’s performance on MIA dataset. The data for this figure can be found on
the CD in directory data/results/mia_dataset/.

word “fax”, which had already been on the most informative word list for plain feature
selection, it now contains the words “tel”, “email”, and “internet”. We see that these words
indicate an address only if a break tag “<br>” is in front of them. On web pages, it is a
common method of formatting to end each line of an address with a break. Therefore,
this word selection is more accurate. For the plain texts, “tel”, “email”, and “internet” do
not belong to the most informative words, because they appear too often in a non-address
contexts. With the additional structural information of the <br>-tag, the algorithm can
identify those appearances of the words where they are most likely part of an address.

The Decision Tree classifier and the Neural Network classifier perform somewhat
better than the Naive Bayes classifier. The reason for this lies in the input feature
selection. As we have seen in the discussion about the most informative word lists, pages
containing address information can be identified by looking for certain keywords. When
the word “fax” appears on a page, it is very likely that this page contains an address.
The Decision Tree classifier uses binary input features. It gets the information if a word
is contained on a page, or not. The Neural Network and the Naive Bayes classifier get
somewhat different information: For them, the input feature is the relative frequency
of a word on a page. For the Naive Bayes classifier, this makes it harder to classify a
page, because the influence of a word on the probability of a hypothesis is linear to the
number of appearances of the word. Therefore, the algorithm is mislead by the different
frequencies of the keywords. Neural Networks do not suffer this problem, because the
influence of the network’s input (i.e. the feature vector elements) is non-linear.

For the classification of HTML pages, we would expect better results when taking
the structure of the page is taken into consideration, because HTML pages contain a lot
of structural information. In practice, the performance increases only little when using
structural information. An explanation for this lies in the hybrid structure of HTML.
The structure of HTML tags is not very rigid. A lot of tags are not indicators for the
kind of information they are tagging, but for the way the information shall be displayed
on a screen. HTML mixes tags indicating structural properties of texts, like the <h1>
tag to indicate head lines, with formatting tags like <font>, which set a specific font.
We can not expect to take advantage of these tags. Additionally, a lot of HTML pages
are written in a very sloppy way, where tags are used semantically wrong as well as
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Standard Improved Outermost-2 Rainbow
Features Features Features
1 || Fax: fax br_a_internet | fax
2 || &middot; blind a__ 32 tel
3 || BGCOLOR=#FFFFFF || 040 _br_ 040 br
4 || GmbH<BR> mailto _br_tel kr
5 || 040 gmbh<br> | style 838lel | middot
6 | 6076 1367 style  1814b8 | blind
7 || KCS 6076 _br_email sungen
8 || EMail: kes _br_6076 hotel
9 || ALT="Hamburg topsite _br_1367 mailto
10 || CELLSPACING=0> info@kcs _br_ fax topsite

Table 4.4.: Most informative words for the classification of the MIA dataset using stan-
dard feature selection, improved feature selection (see page 58), and 2-
outermost feature selection. The right column shows the most informative
words used by Rainbow

syntactical wrong.

We can expect this to change when structural languages with a better separation
of description of context and description of how the context shall be displayed, like
XML [41], proliferate.

Comparison to Rainbow

The performance of Rainbow on the MIA dataset is shown in table 4.5. The best perform-
ing algorithm / input feature selection method combination of MIC classifies 89.2934 %
of the pages correctly. This is slightly better than the performance of Rainbow, where
the best classification result is 88.04 %. It is interesting to note that Rainbow’s Naive
Bayes classifier performs better than MIC’s Naive Bayes classifier. MIC’s Naive Bayes
classifier with improved feature selection (see page 58) achieves a precision of 84.3683%.
The reason for this lies in the different methods used by MIC and Rainbow to improve
the quality of the features. Rainbow filters out more non-alphanumeric characters than
MIC. The lists of most informative words used by Rainbow and MIC are shown in fig-
ure 4.4. In difference to the improved word list used by MIC, Rainbow uses both the
words “tel”, and “fax” for classifying pages, whereas MIC only uses “fax”. Rainbow filters
out all special characters, whereas in MIC some special characters remain in the words.
This is due to the MIC’s treatment of structural tags. MIC’s structural feature selection
method build upon the improved feature selection methods. For the structural meth-
ods, it is necessary to keep special characters like “<”, and “>” in the text in order to
distinguish tags from words. This is not really a problem, because when including the
structural information into the feature selection, MIC outperforms Rainbow.
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Naive Bayes 88.04%
TFIDF /Rocchio 87.05%
K-nearest neighbor 87.84%
Maximum Entropy 86.64%

Expectation Maximization 86.93%
Support Vector Machines 87.67%
Fuhr’s Probabilistic Indexing | 86.85%
Shrinkage with Naive Bayes | 87.71%

Table 4.5.: Performance of Rainbow’s algorithms on MIA dataset

4.5.3. Email Dataset

Emails only have two structural tags: The outer one indicates if the section of the email
is the header or the body. For the head elements, there is an additional tag which shows
to which header (for example From:, To:, or Subject:) the line belongs. Therefore
the n-innermost-selection for all n is identical with the I-innermost-selection. The same
applies to the n-outermost-selection.

We used two datasets in these simulations. One contains the full set of emails. The
other contains a reduced set of only 363 emails in 8 categories. This smaller dataset has
been created in order to compare the performance of our methods to the performance
of the commercial software SERpersonalBrain. Only an evaluation version of SERper-
sonalBrain is available without charge. This evaluation version is limited to a maximum
of 10 categories with up to 100 document in each category. MIC’s results are shown in
table 4.6.

An examination of the most informative words lists shows why the classification of the
emails does not improve when we include structural information from the mail headers.
Table 4.7 shows the most informative word lists for the different feature selection methods.
The number one most informative words on all lists look a bit strange on first sight: For
the plain (no structure) feature selection list, this word is “ro”. For the word list using
structural information, it’s the word “header o7, i.e. the word “0” in the header of
a message. These strange entries stem from the way a Unix mail client stores status
information about email. The client adds a line “Status:” to the header, followed
either by “RO”, for old mail which had been read, or “O” for old mail that has not been
read. If no status line is present, the mail arrived newly in the system. Thus, the most
informative feature of a mail is whether it has been read, or not. In terms of data
mining, we can extrapolate that the user tends to read mails from only a few categories,
whereas other mail gets stored unread. The status information is only available because
our classification algorithm works on archived mail. If the classification algorithm would
work within the MDA as intended, this information would not be present.
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SER Dataset

Naive Bayes

Decision Tree

Neural Network

Standard Feature Selection 64.6707% 77.2455% 76.0479%
Improved Feature Selection 71.8563% 78.4431% 77.8443%
1-Innermost Tags 70.0599% 76.0479% 67.6647%
1-Outermost Tags 71.2575% 78.4431% 74.8503%

Full Email Dataset

Naive Bayes

Decision Tree

Neural Network

Standard Feature Selection 52.0436% 68.0291% 70.0272%
Improved Feature Selection 63.851% 75.931% 70.5722%
1-Innermost Tags 59.2189% 62.2162% 67.6658%
1-Outermost Tags 64.396% 71.4805% 69.4823%
Table 4.6.: MIC’s  performance on email SER dataset and full email
dataset. The data for this figure can be found on the CD
in the directories data/results/full_email_dataset/ and

data/results/ser_email_dataset/.

Comparison to SERpersonalBrain

As mentioned in chapter 4.1.2, only an evaluation version of SERpersonalBrain is avail-
able without charge. It is restricted in the numbers of categories and documents. In order
to evaluate the performance of this program, we created the SER Mail subset of the full
email dataset. The SER subset contains 363 mails in 8 categories. Table 4.6 shows the
performance of our algorithms on this dataset. 196 of these mails have been used for
training, and 167 for testing. SERpersonalBrain classified 118 mails correctly, 6 wrong,
and 42 not at all. This is a recall-rate of 70.6%, and a precision of 95.1%. The top per-
forming algorithm / feature selection combination from our experiments classifies 78.44%
of the emails correctly. Thus, our classification methods outperform SERpersonalBrain

on this dataset.

Comparison to Rainbow
Table 4.8 shows the performance of Rainbow on this dataset. The performance of all
algorithms provided by Rainbow is basically the same. Just as for the other testing
datasets, MIC significantly outperforms Rainbow. The performance of Rainbow’s classi-
fication algorithms is comparable to MIC’s Naive Bayes classifier with standard feature
selection. There are two reasons why Rainbow achieves only the performance of MIC’s
worst combination of classification algorithm and input feature selection: The first rea-
son are the algorithms. Just like for the MIA dataset, in this classification task not the
frequency of a word on a page is really relevant, but if a word appears on a page at all.
In chapter 4.5.2 we explain why Neural Networks and Decision Trees are better suited
for these kind of classification tasks than Naive Bayes classifier.

The second reason lies in Rainbow’s input feature improvements. For the MIA classifi-
cation task, Rainbow’s more restrictive way of removing all non-alphanumeric characters
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Improved || Outermost-1 || Rainbow
Features | Features

1 |ro header o o

2 || edu header edu || cade

3 ijcar to die

4 || ki the ich

5 || the header vm der

6 || uka header d und

7 || adnan header uka || uiowa

8 | floc adnan cs

9 || chalmers | header_ijcar || zu

10 || nil i pschmitt

Table 4.7.: Word list for email classification using improved feature selection and 1-
outermost feature selection. The right column shows the most informative
words used by Rainbow.

Naive Bayes 53.42%
TFIDF /Rocchio 53.26%
K-nearest neighbor 53.62%
Maximum Entropy 53.85%
Expectation Maximization 53.10%
Support Vector Machines 52.41%
Fuhr’s Probabilistic Indexing | 53.03%
Shrinkage with Naive Bayes | 53.17%

Table 4.8.: Performance of Rainbow’s algorithms on full email dataset

had been an advantage compared to MIC’s less restrictive approach. Here, MIC’s ap-
proach does better. The list of most informative words in table 4.7 also shows the most
informative words used by Rainbow. Compared to MIC’s improved feature selection, the
word “edu”, which is the second most informative word for MIC’s feature selection, is not
used by Rainbow.

45.4. News Dataset

For the news dataset, the same argument applies as for the email dataset. It is interesting
to examine how features are selected in this example. In a way, there is no real classifica-
tion task involved. The classification, i.e. the name of the newsgroup, is provided in the
header, thus it is part of the input data. The dataset is of interest anyway, because it
allows us to study if and how this information is detected and used by the classification
methods.
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Naive Bayes | Decision Tree | Neural Network
Standard Feature Selection 81.5763% 75.8444% 51.7912%
Improved Feature Selection 83.2139% 92.4731% 82.088%
1-Innermost Tags 84.1351% 94.5752% 91.2999%
1-Outermost Tags 87.2057% 94.1658% 85.6704%

Table 4.9.: MIC’s performance on newsgroup dataset. The data for this figure can be
found on the CD in directory data/results/newsgroups_dataset/.

text ‘ ‘hardware‘ ‘ mac ‘ ‘graphics‘ ‘hockey‘ motorcycles ‘space ‘ ‘politics

Figure 4.2.: Top of decision tree for newsgroup classification using improved feature se-
lection (see page 58).

The Decision Tree classifier allows to get exact information about the classifica-
tion process. Table 4.10 shows the most informative words for the different feature
selection methods. Decision Tree classifier with standard feature selection decided
on the classifications in a very reasonable way: The classification is mainly based
on the newsgroup name. The notable exceptions are “christian@aramis.rutgers.edu”
and “Approved:” as the first and third most informative word. The newsgroup
soc.religion.christian is moderated. Therefore, all articles in it contain the header
line Approved: christianQaramis.rutgers.edu. It is a better keyword than the name
of the newsgroup itself, because the name of the newsgroup is mentioned in other news-
groups, too. The other categories are identified by the name of the newsgroups. Although
this is a very good strategy, the classification is correct only for 75.8444% of the doc-
uments. This feature selection method has two weaknesses. It does not know if the
newsgroup name comes indeed from the Newsgroups: header. It is also possible that
the name of a newsgroup is mentioned in the body of an article, but the article did not
got posted to this newsgroup. The second problem poses articles which got cross-posted
to multiple newsgroups. In cross-posted articles, the Newsgroups: line contains multiple
newsgroups names, separated by commas. In these cases, the relevant newsgroup’s name
is not a separate feature, but combined with the names of other newsgroups. Therefore,
the classification algorithm can not identify it.

This second problem does not occur for improved feature selection (see page 58).
Figure 4.2 shows the top of the decision tree for this feature selection method. One aspect
of the improvement is that all special characters are removed from the text. This includes
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Standard Improved || Outermost-1
Features Features || Features
1 christian@aramis.rutgers.edu || comp header comp
2 | rec.motorcycles rec header sci
3 | Approved: sci header rec
4 | soc.religion.christian politics header politics
5 rec.sport.hockey windows || header windows
6 rec.sport.baseball sport header sport
7 || comp.windows.x approved || header electronics
8 || References: space header__hardware
9 sci.electronics hardware || header approved
10 || comp.sys.mac.hardware mideast header space

Table 4.10.: Ten most informative words for the newsgroup dataset using standard, im-
proved, and l-outermost feature selection.

’ header_comp ‘
y n

’ header_windows ‘ ’ header_sci ‘
y n y n

header_ms ‘ ’ header_hardware ‘ ’ header_electronics ‘ ’ header_rec

Figure 4.3.: Top of decision tree for newsgroup classification using 1-outermost feature
selection.

commas. Therefore, the newsgroup names are no longer concatenated. A new problem
arises from this. The removal of special characters also removes periods. The names of
the newsgroups are teared apart. The algorithm does not identify rec.sports.baseball
as one feature, but as the three features rec, sports, and baseball. This difference leads
to a radically different Decision Tree. The Decision Tree for the plain feature selection
methods had been very similar to decision lists: The tree is very unbalanced. On each
node, the positive branch leads directly to a leaf node, i.e. a classification. With improved
feature selection, we get a “real” Decision Tree, who’s hierarchical structure corresponds
to the hierarchical structure of the newsgroups. The first node splits on the top level
domain “comp”. This separates all documents who are in one of the newsgroups below
comp.ALL from the rest. At the branch with the texts not belonging in comp, rec.ALL
is split from the rest. The next split in the rec.ALL branch occurs on the word sport,
splitting the messages from rec.sport.ALL, from the rest. This continues in the next
split on the word hockey. By this split, the messages from rec.sport.hockey, and from
rec.sport.basketball are identified (the latter because they do not contain the word
hockey).

The improved feature selection is still not perfect. The separate treatment of the ele-
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Naive Bayes 77.16%
TFIDF /Rocchio 78.06%
K-nearest neighbor 78.36%
Maximum Entropy 78.24%

Expectation Maximization 77.96%
Support Vector Machines 77.78%
Fuhr’s Probabilistic Indexing | 78.28%
Shrinkage with Naive Bayes | 78.42%

Table 4.11.: Performance of Rainbow’s algorithms on newsgroup dataset

MIC | Rainbow
MIA dataset 89.2934% | 88.04%
Email Dataset 75.931% | 53.85%
Newsgroup Dataset | 94.5752% | 78.42%

Table 4.12.: Comparison of the best performing algorithms of MIC and Rainbow on the
datasets.

ments of newsgroup names makes this approach even more vulnerable to the first problem
mentioned: The algorithm has no way to distinguish between comp in a newsgroup name,
and comp somewhere in the body of the message. This problem is solved when we ad-
ditionally take the structure of the article into consideration. Figure 4.3 shows the top
of the decision tree for 1-outermost feature selection. Now, the hierarchy of the decision
tree matches the hierarchy of newsgroups.

Comparison to Rainbow

The performance of the different algorithms of Rainbow on the newsgroups dataset is
shown in table 4.11. Some of the classification methods provided by Rainbow have not
been included, because Rainbow crashes when trying to use them. Rainbow achieve the
best performance on the newsgroups dataset for the Shrinkage with Naive Bayes clas-
sifier with an accuracy of 78.42%. Again, MIC outperforms Rainbow. Using Decision
Tree learning with 1-innermost-tag feature selection, MIC classifies 94.5752% of the doc-
uments correctly. The comparison becomes more adequate when we compare the same
classification algorithms. The only algorithm used both by MIC and Rainbow is Naive
Bayes. For Naive Bayes classification, MIC using 1-outermost feature selection achieves
an accuracy of 87.2057%, while Rainbow only achieves 77.16%.

Table 4.12 shows the best performance achieved by MIC and by Rainbow on each
of the datasets. MIC performs better on all of them. Additional, a subset of the email
dataset has been compared to SERpersonalBrain. Here, MIC’s best result is a precision
of 78.4431%, whereas SERpersonalBrain only achieves 70.6%.



5. Conclusions

In chapters 2 and 3, we developed a formal framework for the automatic classification
of texts. Based on these definitions, automatic text classification has been improved in
two ways: We showed how a subset of input features can be selected from a larger set
of potential features while preserving as much information as possible. Our approach,
based on Decision Trees, preserves more information than commonly used methods, like
selection by plain information content and filtering out most and least frequent words.

Secondly, we developed a input feature representation which preservers the struc-
tural information of texts. Our method only affects the input feature representation of
the texts. It can be used with the same standard classification algorithm used for the
classification of unstructured texts.

In chapter 4, we measured the performance of our methods and compared it to stan-
dard methods and third party text classification systems. There is no one-matches-all
algorithm for automatic text classification. Depending on the problem, a different com-
bination of automatic classification algorithm and feature selection function works best.
On all datasets used for testing, MIC outperformed the third-party text classification
systems.

The methods developed for MIC have been shown to perform better than standard
text classification methods. There is still room for improvements. So far, the transfor-
mation between plain and structured text drops the attributes of the structure tags. A
further field of research is to look for methods to preserve this information. The feature
reduction method based on Decision Trees seems to limit the number of features too
much. We can expect better results by combining different feature selection methods.

In HTML pages, structural descriptive tags are mixed which tags describing the
appearance of parts of text. This makes not well suited for structural treatment. When
real structural descriptive languages like XML proliferate, we expect the significance of
classifiers using structural information to increase.

In this part of the thesis, we developed a working methodology for the classification

of structured text. In the next part, we show the software system developed in order to
set these methods into practice.
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The first part of this thesis is about the automatic classification of structured and
unstructured texts. We show our approaches and compare them to the results obtained
from traditional text classification systems. In the second part of the thesis, we describe
MIC, the text classification system developed for this work. MIC has been developed for
a couple of reasons. We need a reference implementation in order to test the concepts
from chapters 2 and 3, and to measure the results shown in chapter 4. The second
reason for developing MIC is that we need a real, working application to solve the tasks
described in chapter 1.

This part of the thesis is split into two chapters. The next chapter describes the usage
of MIC in the different scenarios described in chapter 1. Chapter 7 gives a description
of the internal structure of MIC. Appendix A shows in detail how MIC is set up for the
classification of email.



6. Using MIC

In chapter 1, we describe three applications for our text classification system:
e A stand-alone program for general text classification purposes.

e Part of the specialized Internet search engine MIA, where it has to classify web
pages.

e A system for automatic email classification.

In this chapter, we show how MIC is applicable to these three scenarios. We start
with the usage of MIC as a stand-alone application. In difference to the areas where MIC
is embedded in other software, the standalone application is the only scenario where the

graphical user interface is used. The GUI gives a direct, visual view on the elements of
MIC.

6.1. Using MIC as a Standalone Program

6.2. General Purpose Text Classification

Modern personal computers come with gigantic storage space. A new computer nowadays
(March 2001) has at least 15 GBytes of hard disk storage. Even when using the computer
only for personal matters, a user stores large collections of text data on her computer.
Data from the Internet in form of web pages, Usenet messages and personal email gets
stored, as well as data from other sources, like CD-ROMs with newspaper archives,
e-books and encyclopedias. The hierarchical file systems of modern operating systems
have little means for helping the user to manage these data collections. Database systems
allow fast and consistent data storage and retrieval, but are little used in non-professional
environments, because databases need a well thought layout and regular maintenance.
A personal user hardly puts the necessary efforts in creating and maintaining a database
system. The intrinsic inhomogeneity of data from various sources makes it practically
impossible to use a database as a generic storage medium for all kinds of information.
A solution to this problem is the use of advanced tools for the retrieval of data stored
on an ordinary file system. A commonly used approach is keyword search. For example,
the program glimpse [8] uses an index of all words in all files in order to do quick keyword
searches. The use of keywords has limitations. In a lot of cases, it is not possible to give
explicit keywords, but one can point to examples for the kind of texts one is looking for.
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Training Phase

O Learns
Provides Examples "
)\ Classifier

User

Using Phase
Document to Classify .
Classification
User

Figure 6.1.: Use case diagram for generic text classification tasks

‘ View ‘ Classification System Element ‘

Document Set View | Texts, Sets of Texts, Classifications
Output Vector View | Output Vectors, Output Vector Components
Classifier View Classifiers

Statistics Classification

Table 6.1.: Views and their corresponding elements of the classification system

In these cases, our automatic classification system MIC can be used. MIC provides a
GUI where one can define categories and example documents for the categories. After the
system has trained on the examples, it can be used to find similar documents. Figure 6.1
shows a use case diagram for generic text classification tasks.

When we describe the usage of MIC as a standalone program, we will use the news-
group article classification example [23]. 100 documents from each of 20 newsgroups are
given. The dataset is randomly splitted in two halves. One half is used for training. The
other half is the testing dataset. The task for the system is to categorize this second
dataset correctly.

6.2.1. GUI Elements

The GUI follows the common structure of a KDE application. It is divided into three
parts: The top part contains the menu bar. The menu bar has common elements for
all KDE applications. Foremost, the menu bar allows to load and save files. The icons
on the tool bar, located by default under the menu bar, give direct access to the most
important functions. The largest part of the screen is occupied by the view of the object.
The view is individual for each application. In this chapter, we describe the views used
in MIC. Figure 6.2 shows the menu bar and the tool bar. Under the tool bar, it shows
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Figure 6.2.: MIC’s menu bar, tool bar, and tab bar
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Figure 6.3.: Document Set View

the tab bar which is the main navigation element in the MIC view.

In chapters 2 and 3, the following elements of a text classification system have been
identified: Texts (page 39), sets of texts (examples, page 21), classifiers (page 19), classi-
fications (page 19), output vectors (page 20), output vector components (page 19), and
feature selection functions (page 18). MIC’s GUI reflects these formal elements. It is
divided into five views. Each view gives access to one or more elements of the text clas-
sification systems. The tab bar shown in figure 6.2 is used to switch between the views.
Table 6.1 shows which elements of the classifier are accessed via which view.

Document Set View

The document set view manipulates texts and document sets. Document sets can be
created and deleted. Texts can be assigned and removed from document sets. Usually,
at least two document sets are needed for a text classification run: One document set
contains the texts used for training the classifier. The second document set contains
the texts for testing. These are the text which shall be classified. In order to make the
creation and manipulation of text sets more simple and flexible, different methods are
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Figure 6.4.: Output Vector View

available to select and move texts between document sets. Texts can be selected by a
pattern in their file name, they can be selected by their classification and they can be
selected randomly.

There are 2000 texts in the newsgroups example. Two document sets, “training” and
“testing” are created. The texts are randomly assigned to the two document sets.

Output Vectors View
The output vector view, shown in figure 6.4, manipulates the output vector components
(categories) and output vectors. Output vector components are defined as intervals, in
which each number of the interval represents a category (definition 3 on page 19). MIC
allows to define categories not only as integer values, but also as floating point values.
This allows the categorization in non-discrete categories. At this point, none of the
currently implemented classifier handles floating point valued categories.

Since the newsgroup articles from the example are classified only in regard to their
newsgroup, the output vector has just one component. The domain of the vector com-
ponent is the integer interval [0, 19], representing the 20 newsgroups.

Classifier View

The classifier view provides the interface for the interaction with the various classification
methods. The four elements on top of the view, shown in figure 6.5, are common for all
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Figure 6.6.: Classifier View: Manual Classifier

classification methods. These elements allow to add, delete, and change the classification
methods. The lower main part of the view is provided by the actual classification method.
There are four classification methods available.

Manual Classifier

In the manual classifier, the classifications of the texts are done manually. The interface
for the manual classifier is shown in figure 6.6. In the left part of the screen, single or
multiple texts are selected. Like in the document set view, the texts can be selected man-
ually or by matching filename patterns. In the right part of the screen, the classification
of the selected texts is set.

Usually, a manual classifier serves as the reference classifier (see definition 7 page 21)
when another classifier is trained.

In the newsgroup example, the articles from each of the newsgroups are stored in
a subdirectory carrying the name of the newsgroup. All texts from one newsgroup can
be selected by pattern matching on the filenames, where the name of the newsgroup is
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Figure 6.7.: Classifier View: Naive Bayes Classifier

used as the pattern. When the selection is done, the selected texts are assigned to the
corresponding category.

Naive Bayes Classifier, Decision Tree Classifier

Figure 6.7 shows a screenshot of the Naive Bayes classifier view. This view and the
view for the Decision Tree classifier are very similar. They are split into two parts.
The parameters of the classification algorithm are set in the left part of the screen.
Since both classification methods are learning classifiers, they have several parameters
in common. These are the selectors for the output vector, the reference classifier, the
training document set and the testing document set. The training set selection defines
which document set is used for training, and the testing set selection defines which
document set is used for testing. The reference classifier gives the correct classification
of the texts in the training sets when the algorithm is trained (see definition 7 on page
21). Usually, the reference classifier is a manual classifier.

On the right side of the screen, the feature selection can be manipulated. Changing
these parameters changes the feature selection function as described in chapter 3. The
methods for limiting the number of input features as described in chapter 3.2 are available
only for the Naive Bayes classifier. For Naive Bayes classifier, one can choose how many
input features to use and how they shall be selected. Either, features can be selected by
the “plain” information content of the words or by the information content extracted from
a Decision Tree. The Decision Tree classifier always uses as many features as possible.

There are two modes of operation for the classification function. In training mode,
initiated by pushing button “training”, the classifier is trained from the training text
set. In testing mode, initiated by pushing button “testing”, the classification function is
applied to the set of documents in the testing text set.



82 CHAPTER 6. USING MIC

Neural Network classifier

The Neural Network classifier is similar to the Naive Bayes, but there are additional
parameters specific to this classifier. The number of hidden nodes for the network can be
selected, and the learning rate. (See chapter 2.5 for details about selecting the number
of hidden nodes and the learning rate.)

For the newsgroup example, we choose a Neural Network classifier with 50 hidden
nodes and a learning rate of 0.2. We choose all the standard feature improvement meth-
ods, plus the outermost structure information. For the newsgroups messages, this struc-
ture information is about whether a word is in the header of the article or in the body.

When the network is trained, the documents from the testing set can be classified.
When this is done, the user has two choices how to proceed. One opportunity is to
switch back to the document set view. Here, the user can check the classification of single
documents or a group of documents from the testing set. For example, she could decide
to select all texts from the testing set who have been assigned to newsgroup alt.atheism,
and move them to a new document set for further processing. Alternatively, the user can
switch to the statistics view, where some statistical measures about the accuracy of the
classification can be calculated.

Statistical View

This view shows some statistics about the performance of a classifier. The selection boxes
on the left side of the screen are similar to those used in the neural network classifier and
Nuaive Bayes classifier. In these boxes, the reference classifier and the test classifier are
set. The output vector box selects the target domain. The precision and the recall of the
testing classifier are calculated as given in definitions 23 and 24 on page 54. The results
are written in the text box on the right screen. The results of consecutive calculations
(for example, when classifiers are compared), are appended to the text box. A screenshot
of the statistical view is shown in figure 6.8.

XML

The last element of the tab bar gives direct access to the XML representation of all
objects of the current document. This view is mainly for debugging purposes.

6.3. Using MIC as an Agent

In order to use MIC embedded in an email classification system and within MIA, we
need a programmable user interface instead of a GUIL. A variety of methods is avail-
able for interconnecting software components. Since MIC is based on the KDE desktop
environment, the most obvious choice would be to access MIC via the KDE component
architecture KParts [17]. We did not choose this approach, because it allows only to com-
municate in between KDE applications, but both of our target applications, MIA and
the email classification system, have not been developed in the KDE framework. MIA
does have a very flexible, agent based component system. Therefore, we implemented an
agent interface in MIC.
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Figure 6.8.: Statistics View

6.3.1. Agent Interface

For the agent interface, MIC needs a communication protocol and a communication
channel to exchange information with other agents. The MIC agent component supports
two communication channels. The first channel is the program’s standard input and
output. This channel allows to access MIC via a Command Line Interface (CLI). Unless
standard input and output are redirected, MIC reads commands from the keyboard and
writes them to the text console. This mode allows a human user to use MIC interactively.
Using command line redirection for non-interactive access to MIC causes problems, be-
cause Unix pipes are not suited for bidirectional communication.! In a true agent based
application, it should be possible to run the various agents in different hosts on a net-
work. When more than one agent wants to talk to another agent, there should be locking
mechanisms preventing interference. All this is not possible when the command line and
standard input/output are the only means to communicate for an agent. The prolifera-
tion of the Internet established communication mechanisms that are able to handle these
requirements. MIC uses the standard protocol(s) TCP/IP as the communication channel
for agent based communications.

In the future, the standard agent language KQML [5] will be used for all communi-
cation between the MIA agents and other agents. Since the KQML interfaces for MIA
are not defined yet, MIC uses a much simpler, proprietary communication protocol for
now. Commands are sent to MIC as one line instruction. These instructions consist of
a command and a number of arguments. The commands are tightly connected to the
internal structure of the MIC system. Commands consist of two parts. The first part
denotes the class which is called, the second part the method in the class. Following

!This is for example discussed in [18, page 344-345]
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Figure 6.9.: Use case diagram of the interactions between the MIA-agents, the WWW,
and the user. This diagram is simplified. There are more agents in the actual
system who act in a more complex manner.
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Figure 6.10.: MIA with a classification agent.

parameters are passed as functional parameters to the method. We will have an in-depth
look in MIC’s structure in the next chapter. Therefore, we will not give a detailed list
of commands at this point. It should be noted that MIC is nearly fully scriptable. All
relevant methods from all classes can be accessed via the agent interface. In this chapter,
we show how MIC is embedded in the other applications.

6.3.2. Using MIC as a Part of MIA

The aim of MIA is to provide a mobile user with relevant information. One part of the
MIA system extracts addresses from web pages. When MIC knows the user is looking
for Chinese restaurants and found the web pages of a restaurant in the vicinity of the
user, the extraction agent tries to extract this address information from the web page.
The web pages are collected by the spider agent which crawls through the WWW. This
scenario is shown in figure 6.9. Figure 6.10 shows how the classification agent is situated
in between the spider agent and the extraction agent. The classification agent improves
the performance of the system as described in chapter 1:

e Efficiency

Extracting information from a web page is a very complex and time-
consuming task, even when it fails. More than 50% of the web pages
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gathered by the spider agent do not contain any address. By sorting out
these pages, we can speed up MIA.

o Effectiveness

When trying to extract information from a database, we can use different
methods. Some of the methods give very accurate results (when they
extract something, it is most probable an address), but fail to extract
an address from time to time. Other methods are more “loose”. They do
not disregard addresses, but from time to time they extract something
which is not an address at all. When the classifier provides an confidence
measure about how likely it is that a page contains an address, we can
select the method to use for extraction more accurately.

Two steps are necessary to incorporate MIC into MIA. First, we have to set up and
train a classifier. Second, the classifier must be put into the MIA system.

The training step can be done offline via the GUIL. For training, the dataset of classified
web pages described in chapter 4.1 is used. This is a set of 973 texts gathered by the
MIA spider module. There are two categories: Either a text contains an address, or it
does not contain an address. The pre-classification for the learning algorithm is provided
by a reference classifier. This has been the non-trainable zip + city algorithm, which
is described in the chapter 4.1.1. We choose the best-performing classifier and feature
selection to be trained on these data. This is a Decision Tree classifier with improved
feature selection. The results of the training are stored in a file.

Within MIA, MIC is used as an agent. MIA only needs a few commands to commu-
nicate with MIC: On startup, MIC has to load the file with the trained classifier. After
this, MIC waits to get the command to assign a classification to a text and returns the
classification.

MIC is accessed as a client/server application in this scenario. The server process is
started, and the trained classifier is loaded. The server listens to a socket. Whenever a
new web page is retrieved by the spider agent, it connects to the MIC server and requests
the classification of the text. The server classifies the text and returns the result. Only
if the web page is classified as containing an address, it is passed to the information
extraction agent.

6.3.3. Using MIC as a Part of an Email Classification System

One practical application of MIC is the automatic classification of email. Figure 6.11
shows a use case diagram for the classification agent in a mail-system.

There are already numerous systems available for the automatic filing of emails. These
systems filter email by pattern matching. For example, emails are filtered by a pattern
in the From: or Subject: line. These systems are mainly used to separate personal
mail from bulk mail, like messages from mailing lists. They fail when the categories are
loose and not strictly defined in term of patterns. A common example of such a set are
UCE/UBE2, also known as Spam. No user wants to see all the unsolicited advertisement

*Unsolicited Commercial Email / Unsolicited Bulk Email
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Figure 6.11.: Use case diagram of a mail-system with a classifier agent.

emails. These emails can not be filtered out easily by matching for specific patterns,
because those who send it take active counter measures against keyword based filtering.

MIC is better suited to filter out these kind of email, because its methods take the
whole message into consideration and not only some keywords.

There are other areas where MIC’s methods are better suited than simple pattern
matching methods. All bigger Internet entities have a number of accounts via which
a user can gets in touch with the staff. Common names for these accounts are abuse,
admin, root, usenet, or postmaster. A lot of work is saved when mail send to these
generic account is automatically forwarded to the person who is responsible to answer
requests of a certain type. Since the user will usually not use predefined forms in her
email, but freely written text, strict pattern matching is not very well suited to do this
classification.

Just like in the MIA application, MIC is trained offline for classifying email before it is
incorporated into the MDA. The email dataset from chapter 4.5.3 is used for training. The
trained classifier is saved to a file. Just like in the MIA scenario, the actual classification
of the email is done in a client/server environment. A MIC server process is started,
and the trained classifier is loaded. Whenever a new email arrives, the MDA calls a
small client application which passes the email to MIC, and stores the email according
to MIC’s classification. The details of this process are explained in appendix A.



7. MIC System Description

This chapter shows the internal structure of MIC. Since MIC is object oriented, the
structure of the chapter follows the object oriented paradigm of UML (Unified Modeling
Language) [2]. UML is the standard of object oriented software design. An UML de-
scription consists of a set of diagrams of different types. The diagrams describe different
aspects of the software project. In this chapter we make use of four UML diagram types:
Use-case models, finite state machines, class diagrams and sequence diagrams.

We start by transforming the formal elements of a text classification system, as de-
veloped in the first part of the thesis, into objects. The objects are grouped together
in a hierarchy. The main part of this chapter describes the objects. We start with the
base classes, which define common elements of all MIC objects. A detailed look on the
different objects follows.

UML does not give instructions how to transform a real-world system into an object
oriented model. We use another concept from software engineering, which is not part
of UML, for this transition. The formal elements of the text classification system are
modeled in an Entity-Relationship model(ER model). This ER model is transfered into
relational tables. After some normalization, these tables are transfered into objects.

7.1. Concepts

7.1.1. Entity-Relationship-Model of the data

For an object oriented model of the text classification system, we have to identify the
data elements processed in a text classification task and their relationships. In chapters 2
and 3, the following elements of a text classification system have been identified:

e Single texts (definition 16 page 39)

e Sets of texts (examples, definition 6 page 21)

e Text classification functions (definition 4 page 19)
e Feature selection functions (definition 2 page 18)
e Classifications of texts (definition 1 page 18)

e Output vectors (definition 5 page 20)

e Output vector components (definition 3 on page 19)

87
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Figure 7.1.: Entity-Relationship diagram of MIC’s data structures
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Figure 7.1 shows an entity relationship model based on this table. There are numerous
variants of entity relationship models around, which differ in some syntactical detail. We
use the notation given in [40]. Some of the table’s elements correspond directly to entities
of the ER-diagram. Texts are entities with two attributes. The first attribute is the URL
of the text, which gives a unique key for the entity. The second attribute is the actual
text itself. Texts are aggregated into document sets. Document sets have a name as there
only attribute and they have a 1 : n relation to texts; one document set can contain
multiple texts, but each tert is a member in only one document set. Text classifiers, have
relations to the document sets. One document set is used for training, and one document
set is used for testing.

According to definition 3 on page 19, sets of categories are represented as intervals
of integer values. The borders of this interval are stored in the range attribute of the
output vector component entity.

In definition 4 on page 19, text classification is defined as a function from the feature
representation of a text to a classification. This translates into a relation between a text,
an output vector component, and a classifier in the ER-diagram.

From the ER-diagram, it is a small step to the object design. First, the ER-diagram
is transformed into a relational database model. This is a straight-forward task which is
described in every text book on database design. (See for example [40, page 134].) The
relational tables are shown in table 7.1. Each table of the relational database corresponds
to an object of the system. Before we can transform the tables into objects, they have
to be normalized. Normalization is a standard method in database design in order to
avoid anomalies. An anomaly occurs when a data base gets inconsistent because of
an operation, or if an operation can not be performed because the database design is
too restrictive. In the relational tables in table 7.1, insertion anomalies and deletion
anomalies can occur. An insertion anomaly occurs when a new text (with URL and
actual text) shall be defined without assigning it to a document set. With table 7.1
this is not possible, because both the URL and the name of the document set are key
attributes of table Document Set / Text. The deletion anomaly is symmetric to the
insertion anomaly: When a document set is deleted, also all the texts in this document
set must be deleted.

Anomalies are avoided by transferring the tables into normal forms. This is done —
just as the transformation from the ER-model to the relational tables — by a standard
method. Table 7.2 shows the normalized form of the tables. From this table, the main
classes of the MIC system are derived.

7.2. Base Classes

In object oriented design, objects are arranged in a hierarchy. The hierarchy of MIC
classes is shown in figure 7.2. Objects in lower positions in the hierarchy inherit the
properties from the objects at the upper positions. The base class of all MIC objects
contains the functionality which is common to all MIC objects. For MIC, these are
two properties: In order to load and save a setup to a file, an object must be able to
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Document Set / Text Name (Document Set)
URL
Actual Text (ASCII)

Classifier / Document Sets / Features | Name (Classifier)

Name (Document Set (Testing))
(
e

Name (Document Set (Training))
Features

Output Vector / Name (Output Vector)
Output Vector Component Name (Output Vector Component)
Range (Output Vector Component)

Classification / Text / Classifier / URL (Text)

Output Vector Component Name (Classifier)
Name (Output Vector Component,)
Category

Table 7.1.: Tables created by transforming entity-relation-model shown in figure 7.1
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Figure 7.2.: Class Hierarchy
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Document Set / Text

Name (Document Set)
URL

Text

URL
Actual Text (ASCII)

Classifier / Document Sets /
Features

Name (Classifier)

Name (Document Set (Training))
(
e

Name (Document Set (Testing))
Features

Output Vector /
Output Vector Component

Name (Output Vector)
Name (Output Vector Component)

Output Vector Component Name
Range
Classification / Text / Classifier / | URL (Text)

Output Vector Component

Name (Classifier)
Name (Output Vector Component)
Category

Table 7.2.: Table 7.1 transfered to second normal form.

Object Corresponds to Table

MICDocumentSet Document Set / Text

MICText Text

MICClassifier Classifier / Document Sets / Features

MICOutputVector Output Vector / Output Vector Component
MICClassification | Classification / Text / Classifier / Output Vector Component

Table 7.3.: Correspondence of MIC classes and relational tables.
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write its current state into a text representation which can be stored in a file. The second
property has to do with the agent interface of MIC. In order to use MIC non-interactively,
all classes need an interface for batch processing.

7.2.1. XML

The superclass of all MIC classes is class MICXMLObject, which itself inherits from class
Qbject, the base class of all objects derived from the QT library [29]. As the name
suggests, the base class defines an interface for loading and storing instances of the class
in XML format. Since this interface is inherited by all MIC objects, all objects can
save and restore themselves from an XML document. By this, a defined way exists
to transfer instances of MIC classes in and out of MIC. For now, MIC objects can be
loaded or saved on storage media. In future version, the interface will be extended for
the exchange of objects with other applications. XML has been chosen as a flexible, well
accepted standard format for structured information. The DTD for MIC documents is
shown in appendix C.

7.2.2. Batch Interface

Beside loading and storing the instance of the object as an XML document,
MICXMLDocument provides a second common interface. This interface is method batch. It
handles accessing the objects in batch mode and agent mode. In chapter 6, the methods
of accessing MIC are described: Via the Graphical User Interface, and via a the batch /
agent interface. The batch / agent interface allows a direct call to methods of the classes
via textual strings. These strings can either be provided interactively or in an agent
environment by another agent. The batch interface transfers commands into API-calls
transparently. The syntax of a command is

<Classname>.<methodname> <first parameter> <second parameter> <...>

The details of the syntax and semantics of the batch interface are discussed in sec-
tion 7.5.1, which describes class MICBatch. For now, it is only important to note that all
classes inheriting from MICXMLDocument are scriptable.

7.3. Classes Details

This chapter gives details about the classes. For each of them, the purpose of the class,
the batch interface, and the GUI is shown. The DTD for the XML structure of documents
is given in appendix C.

7.3.1. The Class MICText

Class MICText provides the interface to the actual text. As shown in table 7.2, texts are
identified via their URL. Using the URL has two advantages: We can be sure to have a
unique identifier, even in a global namespace. Additionally, the URL abstracts from the
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actual location and method of access. It does not matter if the text is stored on the local
hard disk, a web page, a FTP server, or a news server.
The batch interface to MICText is minimal. It provides the following calls

MICText::batch

Command Parameters Description
new URL Creates a new instance of MICText and associates
it with URL URL.
setDocumentSet URL, Assigns text URL to document set documentSet
documentSet
GUI

MICText has not a GUI element of its own. It is embedded in the GUI elements for
editing document sets and manual classifications.

7.3.2. The Class MICDocumentSet

Class MICDocumentSet corresponds to relational table Document Set / Text in table 7.3.
It defines sets of MICTexts. Usually, at least two document sets are used. One defines the
training set for the classifier and one the testing set. MICDocumentSet provides flexible
means to sort lists of texts by common criteria, like their classification, or a pattern in
their filename. MICDocumentSets are identified by their name.

MICDocumentSet::batch

Command Parameters Description
new name Creates a new document set with name name.
GUI

The elements of the GUI have been introduced in chapter 6. The view-
element MICViewElementDocumentSets provides access to the MICTexts, and the
MICDocumentSets. A screenshot is shown in figure 6.3 on page 78. The left side of
the screen shows the document sets. It allows to create new document sets, change the
name of existing document sets and delete them. The right side of the window shows the
MICTexts. Texts can be loaded, removed and assigned to document sets. It is possible
to recurse directories when adding texts. Beside manual selection, files can be selected
based on patterns in their filenames, randomly, or by their classification. Figure 7.3
shows a Finite State Automaton (FSM) of MICViewElementDocumentSet. The FSM is
shown in UML notation |2, pp. 248|.

7.3.3. The Class MICOutputVectorComponent

MICOutputVectorComponent stores elements of an output vector, i.e. the set of categories
in regard to a specific topic. The categories are represented as intervals of integer or
floating point values, as defined in definition 3 on page 19.
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Figure 7.3.: FSM diagram of MICViewElementDocumentSet

MICOutputVectorComponent::batch

Command Parameters Description

new name Creates a new output vector component with name
name.

setOutputVector name Associates output vector component with output

vector name.
setTypelnt type
point.

Set type of the output vector to integer or floating

setBordersTypelnt  Jower, upper ~ Set the borders of the category-interval to [lower,

upper].

GUI

The GUI of the output vector component is combined with the GUT of the output vector.
It is described in the section about the output vectors.

7.3.4. The Class MICOutputVector

The output vector groups output vector components.

Since the association between

an output vector component and its output vector is stored with the output vector
component, MICOutputVector — similar to MICDocumentSet — only stores its name.

MICOutputVector::batch

Command Parameters Description

new name Creates a new output vector with name name.
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Figure 7.4.: FSM diagram of MICViewElementOutputVector

GUI

MICViewElementOutputVectors give access to the MICOutputVectors and
MICOutputVectorComponents. A screenshot is shown in figure 6.4 on page 79.
Output vectors and output vector components can be added, edited and deleted. Every
output vector component is part of an output vector. Figure 7.4 shows a FSM of
this view element. In this diagram, Component Dialog refers to a dialog in which
the user can set the domain for an output vector component and its data type. MIC
supports both integer valued and float valued output vector components, but so far the
implemented classifiers only support integer-valued output vector components.

7.3.5. The Class MICClassification

MICClassification stores the classification of a text in regard to a specific classifier and
output vector component. It is a relation between three elements.

Batch Interface
MICClassification::batch

Command Parameters Description

new text, out- Assigns classification classification to text in regard
put vector of output vector component and classifier
component,
classifier,

classification
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Figure 7.5.: FSM diagram of MICViewElementClassifier

GUI
This class has no GUI element of its own. MICViewElementDocumentSet, where
the texts and sets of texts are manipulated, visualizes this class, too. In

MICViewElementDocumentSet, texts can be selected by their classification in regard to a
classifier and an output vector.

7.3.6. The Class MICClassifier

The classes which implement the various classification algorithms have a special status
within MIC. For these classes, it is important to integrate them into MIC in a way which
makes adding new classes simple. An advanced user can add new classes to the system
without too much hassle. We use two levels of inheritance in the structure of the classifier
classes. The abstract interface to the classifiers is defined in class MICClassifier, which
inherits from MICXMLDocument. It does not do any classification. It serves just a base
class for the real classifiers.

MICClassifier::batch

Command Parameters Description
new classifier Create a new classifier of type classifier.
GUI

The class in charge of visualizing MICClassifier is MICViewElementClassifier. This
view allows access to the classifiers. A screenshot is shown in figure 6.7 on page 81. The
view itself provides a two-splitted window. It only controls the upper part of this window
itself. In it, classifiers can be selected, created, edited and removed. The lower part of
the window belongs to the currently selected classifier. The control of the lower part of
the window is the responsibility of the selected classifier. These are discussed with the
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Figure 7.6.: FSM diagram of MICClassifierRealityWidget

respective classifiers next. A FSM describing the upper part of the window is shown in
figure 7.5. In the New Classifier Dialog and the Edit Classifier Dialog, the user
creates new classifiers by assigning a name and a type to it. The name of the classifier
shows up in the classifier selection box. The type of the classifier decides in which
of the four states Manual Classifier View, Neural Net Classifier View, Decision
Tree Classifier View and Naive Bayes Classifier View the FSM switches when the
classifier with this name is selected. These sub views, which are shown in the lower part
of the window, are described next.

7.3.7. The Class MICClassifierReality

This class implements the manual classifier. It inherits from MICClassifier. Since it
does no classification on its own, this class is fairly empty.

MICClassifierReality::batch
Command Parameters Description
none

Since this is the manual classifier, there is no need to access it. In order to manu-
ally set a classification, one creates an instance of this classifier and associates with a
classification, output vector, and a text by creating an instance of MICClassification.
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GUI

MICViewElementClassifierReality visualizes MICClassifierReality. This view al-
lows the manual classification of texts. The left part of the screen shows the texts in a
document set. The right side shows an output vector. By selecting texts on the left side,
and setting the values of the output vector components on the right side, the user assigns
classifications to texts. She is aided by three buttons on the bottom of the screen. These
buttons allow the selection and unselection all texts in the current document set and
selection based on file name patterns. Figure 7.6 shows the FSM of this view element.

7.3.8. The Class MICClassifierStatistical

MICClassifierStatistical inherits from class MICClassifier. One important aspect
of text classification is the conversion from a text into an input feature vector as defined
in definition 2 on page 18. Feature selection is not implemented in its own class, but as
part of class MICClassifierStatistical.

According to definition 18 (page 40), a text is transfered into a feature vector by using
a subset of the distinct words in all texts as components of the input feature vector. The
value for each vector component is calculated as the relative frequency of the word in the
text. Calculation of the word frequencies is done in class MICClassifierStatistical.
It provides a method countWordsInText () which calculates the frequency of the words
in the text. All feature selection methods described in chapter 3 are based on altering
the word frequency count. They either map more than one word to a feature vector
component or transfer structured text into plain text. All these manipulations are located
in method countWordsInText(). A number of switches turns on or off certain input
feature manipulation methods. A list of these methods is given in chapter 4.3 on page 57.
MICClassifierStatistical also lays the grounds for learnable classifiers, by adding
hooks for a training, and a testing dataset. The actual classification methods in the
child classes reimplementing methods train() and test () with implementations of their
classification algorithms.

MICClassifierStatistical::batch

Command Parameters Description

setOutputVector output vector Define the output vector on which the classifier is
trained.

setStripHTMLTags strip tags Toggle whether to remove HTML tags from the
text.

setRemove- remove bina- Toggle whether to remove binary parts when clas-

BinariesFrom- ries sifying email messages.

Email

setSplitEmail- Structure Set if email shall be treated as plain text or as struc-

HeaderAndBody tured text.
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setConvertTo- convert Toggle whether to convert all words to lower case.
LowerCase
setRemove- remove Toggle whether to remove special characters (i.e.
SpecialCharacters everything non-alphanumerical) from the text.
setConvert- convert Toggle whether to convert quoted printable charac-
QuotedPrintable ters to their ISO-8859-1 representation.
setConvertHTML-  convert Toggle whether to convert special characters from
SpecialCharacters HTML representation to 1SO-8859-1 representa-
tion.

setRemoveStop- convert Toggle whether to remove (German) stop words
Words from the text.
setReference- reference Set reference classifier to reference.
Classifier
setTrainingSet training set Set training set to training set.
setTestingSet testing set Set testing set to training set.
printMost- Print a list of the most informative words.
InformativeWords
setRelevantTags number Set the number of relevant tags to number.
setNrinput- number Set the number of input features to number.
Features
train train Train classifier on training set.
test test Test classifier on testing set.

GUI

MICClassifierStatistical has no GUI element, because it is not used directly. Only
instances of the descendant classes of MICClassifierStatistical are used.

7.3.9. The Class MICClassifierDecisionTree

This class implements the Decision Tree classifier. It is also used by its descendants,
MICClassifierNeuralNetwork and MICClassifierNaiveBayes, to calculate the most
informative words by extraction from a Decision Tree as described in chapter 3.2.2. The
Decision Tree classifier is implemented by reimplementing methods train(), and test ()
from MICClassifierStatistical.

MICClassifierDecisionTree::batch

Command Parameters Description

train train Train classifier on training set

test test Test classifier on testing set

setKindOf- type Set information selection method to either plain or
Information- Decision Tree.

Selection
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NaiveBayesClassifierView

Figure 7.7.: FSM diagram of MICClassifierNaiveBayesWidget

GUI

The GUIs of MICClassifierDecisionTree, MICClassifierNaiveBayes and
MICClassifierNeuralNetwork vary only in details. We will explain the GUI only
once for class MICClassifierNaiveBayes.

7.3.10. The Class MICClassifierNaiveBayes

MICClassifierNaiveBayes implements the Naive Bayes classifier.  Just like for
MICClassifierDecisionTree, methods train() and test() from the parent class are
reimplemented.

Since MICClassifierNaiveBayes does not have any special parameters, the batch
interface is limited to calls to methods train() and test().

MICClassifierNaiveBayes::batch

Command Parameters Description

train train Train classifier on training set.

test test Test classifier on testing set.
GUI

The GUlI-elements for the classes derived from MICClassifierStatistical are very
similar. Therefore, we discuss only MICClassifierNaiveBayesWidget, the visualization
class for MICClassifierNaiveBayes. A screenshot is shown in figure 6.7 on page 81.
The FSM for this dialog is shown in figure 7.7. This view element has four components:

Output Vector Selector In this box, the output vector is selected. It determines the categories.

Training Document Set Selector Here, the user decides which document set is used for training
the classifier.

Reference Classifier Selector Defines the reference classifier. The reference classifier gives the
correct classifications for the texts in the training document set.

Training Push Button Trains the classifier.

Testing Document Set Selector Sets the document set used for testing the classifier.
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Testing Push Button Tests the classifier.

Feature Selection Options A bar of radio-boxes defining how the input features are calculated.

7.3.11. The Class MICClassifierNeuralNetwork

This class implements the Neural Network classifier. The neural network itself is encap-
sulated in auxiliary class MICNeuralNetwork. The Neural Network classifier has some
more options than the Naive Bayes classifier and the Decision Tree classifier. The user
can set the number of hidden nodes, and the learning rate of the network. The additional
parameters can be set via the batch interface.

MICClassifierNeuralNetwork::batch

Command Parameters Description
train train Train classifier on training set.
est test Test classifier on testing set.
setNrHiddenNodes nodes Set the number of hidden nodes of the Neural Net-
work.
setLearningRate rate Set learning rate to rate.
GUI

See GUI section of MICClassifierNaiveBayes

7.4. KDevelop Template Classes

The general structure of the GUI-subsystem of MIC is given by the templates provided
by KDevelop [16], which have been used in the development of MIC. KDevelop is as
an IDE for building KDE applications. By default, a KDE program consists of three
components: the document, the view and the application. In MIC, these are the classes
MICDoc, MICView and MICApp.

7.4.1. The Class MICDoc

An instance of MICDoc is an aggregation of sets of instances of the previously de-
scribed classes. It contains sets of MICDocumentSets, MICTexts, MICClassifications,
MICOutputVectors, MICOutputVectorComponents, and MICClassifiers. A MICDoc is a
configuration of the classification system. Class MICDoc gives access to all these other
classes, and it has method to load and store them.

Batch Interface

MICDoc::batch
Command Parameters Description
newDocument Create a new (empty) document.
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closeDocument Remove document from memory.

openDocument URL Load document URL.

saveDocument URL Save document to URL.

getDocumentAsXML Write document in XML format to stdout.
GUI

MICView provides the GUI of MICDoc. It arranges the GUI elements of the objects
contained in a MICDoc via a tab bar. This tab bar is shown in figure 6.2 on page 78.

7.4.2. The Class MICApp

MICApp runs the graphical user interface. It is is in charge of the menu bar, and tool bar,
which are shown in figure 6.2 on page 78. It also handles loading and saving MICDocs.

7.5. Auxiliary classes

Beside these core elements, there is a number of additional classes. We only document
the most important ones here. These are MICBatch and MICStatistics. MICBatch
passes the batch processing commands to the batch interfaces of the respective classes.
MICStatistics provides some statistical calculations on the performances of the classi-
fiers.

7.5.1. The Class MICBatch

MICBatch handles the batch processing of the MIC system. It is for the batch interface
what MICApp is for the GUI interface: It passes method calls to the right instances of the
objects.

When MIC is stared, a command line parameters determines the mode of operation.
Either the GUI is invoked via MICApp, or the CLI / agent interface via MICBatch. When
MIC is invoked as an agent, MICBatch controls the application. It reads commands from
either standard input or a socket. The commands are passed to the batch interface of
the appropriate class. The result of the batch process is written back to standard out or
the socket. Since all processes can connect to a socket, MICBatch also authenticates the
client. This prevents unauthorized clients from issuing commands to MIC.

Appendix A shows a practical example of the use of the agent interface: MIC is used
as an email classification agent in the MDA of a Unix-like system.

7.5.2. The Class MICStatistics

Description

MICStatistics calculates the recall rate and the precision of a classification as defined in
definitions 23 and 24 on page 54. In order to calculate these values, the user has to set
the output vector, the document set, the reference classifier, and the testing classifier. In



7.6. CLASS DIAGRAM 103

NaiveBayesClassifierView

Output Vector Selection Select
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Vector
Output i
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Figure 7.8.: FSM diagram of MICViewElementStatistics

the calculation, the classification of the testing classifier on the document set in regard
to the output vector is compared to the classification by the reference classifier.

Batch Interface

MICStatistics::batch

Command Parameters Description
calculateStatistics Calculate precision and recall rate.
setDocumentSet name Set document set to name.
setOutputVector name Set output vector to name.
setReferenceclassifier name Set reference classifier to name.
setTestClassifier name Set test classifier to name.

GUI

MICViewElementStatistics provides the GUI for MICStatistics. A screenshot is
shown in figure 6.8 on page 83. This GUI element is quite simple. The document set,
output vector, reference classifier, and testing classifier can be selected, and the statistics
can be calculated. Results are concatenated to the text box on the right side of the
screen. The FSM of this view is shown in figure 7.8.

7.6. Class Diagram

Finally, we group together all classes and create a class diagram. It is shown in figure 7.9.
The main structure is observable from the diagram: There are classes for each of the tables
identified in the entity-relationship diagram. The various elements of the classification
system are held together by class MICDoc. MICDoc contains all the texts, classifications,
classifiers, output vectors, output vector components and document sets for a certain
classification task. On the other side of the diagram, we see the elements of the GUL
MICView is managing the view element classes. When the GUI is used, MIC is accessed
via MICApp. In batch processing, MICBatch handles the commands. The batch interface
does not connect to the GUIL.
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Figure 7.9.: Class diagram for MIC
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7.7. About the Platform

We base the application on widely available and reliable tools. MIC has been devel-
oped on GNU/Linux [20] systems (although it should compile on any Unix-like system)
in C++, using the QT [29] and KDE [15] libraries. (GNU)-C++ combines an object
oriented paradigm with a good compiler and great auxiliary tools for developing, debug-
ging and profiling applications. The QT library provides a rich set of functionality for
general purpose C++ programming. It is especially suited for the development of appli-
cations with decent GUIs. KDE is one of the de facto standard desktop environments
for Unix-like systems. All software used for the development of MIC is licensed under
the GPL [11]. So is MIC itself.



8. Conclusions About MIC

MIC has been used successfully on various classification tasks. There is no other free
software tool around which provides the flexibility of MIC, both in terms of the classifi-
cation methods and the user interfaces. The classification methods implemented in MIC
have been shown to outperform all other freely available text classification systems.

In its current implementation, MIC is mainly a research tool. The design of the
classification system and the GUI focus on maximal flexibility in the selection of classi-
fication algorithms and input feature selection methods. In further versions, the results
of this thesis will be incorporated into MIC. The set of options in MIC can be restricted
to those which guarantee best performance in different scenarios. This way, MIC will
become easier to use without losing its classification power.

MIC has been designed within the KDE framework, which is one of the de facto
standards for the desktop environments of Unix-like systems. With its object and agent
oriented design, MIC is well prepared for the proliferation of component models in which
components from different sources interact in one desktop environment. The flexibility of
MIC, its ability to adapt to different environments, has been shown. MIC can become a
useful component in intelligent document management environments for desktop systems,
as well as in client/server applications.
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A. Classitying Email: A Practical
Example

In chapter 6.3.3, the batch interface is used for email classification. We give a demon-
stration of the batch interface by showing how MIC is accessed in this scenario. In the
email classification task, MIC is used as a client/server application. A MIC server is
running permanently on a machine connected to the net. The server is trained on the
classification task. Whenever a new email arrives, the client is invoked by the MDA (Mail
Delivery Agent). The client passes the email to the server. The server responds with the
classification of the email, and the client files the email in the appropriate category.

Server

The server is set into agent mode by the command line option -socket. When started
with this option, it does not show the GUI, but listens to a TCP port. TCP sockets are
means of communication between processes running on the same or different hosts. MIC
chooses a random port for this. Since the client must know where the server is running,
the name of the server and the port number is written to a file in the user’s home directory.
Via this socket, bidirectional communication with the MIC server is possible. All batch
commands listed in chapter 7 are applicable. As long as the operation system takes no
special measures to restrict access to the ports (e.g. by using a firewall), everybody can
connect to MIC. When running in a non-trusted environment like the Internet, it would
pose a serious security risk if everybody could issue commands to the MIC server. The
client has to authenticate before it is allowed to issue commands to the server. The
authentication mechanism is similar to the MIT-MAGIC-COOKIES used in X: Upon
startup, the server generates a random string. This string is stored in configuration
file .mic_socket_setup in the home directory of the user. The name of the machine
and the port MIC is running on are also written in this file. In order to contact the
server, the client must not only know the name and port of the server, but also send this
authentication string. This way, only clients who have access to the contact information
file, which resides in the user’s home directory, can send commands to the server.

The classifier for classifying emails is trained ofHline and saved to a file. When started,
the server has to load this file. This is done by a call to method openDocument () of class
MICDoc. Let’s assume the file is stored under the name email_classifier.mic. The
following command is send to MIC:

MICDoc.openDocument "email\_classifier.mic"

Alternatively, the name of the MIC-file with the trained classifier can be passed via
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MICBatch ——
[ MiCDac | ‘W‘ [ MICClassifierDecisionTree_ | \wcooc?:w\
‘ ‘

I
load("email_classifier.mic") ,_L .

,,,,,,,,,,,,,,,,,,,,,,,,,

-] O R, N
returns object

Figure A.1.: Sequence Diagram of processing a request to open a document

/home/gb/tmp/new_mail

/home/gb/tmp/mailablage0
/home/gb/tmp/mailablagel
/home/gb/tmp/mailablage?2
/home/gb/tmp/mailablage3
/home/gb/tmp/mailablage4
/home/gb/tmp/mailablageb
/home/gb/tmp/mailablage6
/home/gb/tmp/mailablage?

Figure A.2.: Example .mice_setup file.

the command line. Figure A.1 shows how this command is processed by MIC. The first
part of the command tells MICBatch that this is a command for MICDoc. MICDoc loads
the file. After loading, it parses the file. Whenever it finds an XML tag indicating an
object, it calls the constructor of the corresponding object. The XML sequence specifies
the object. This way, all the objects of the system are created.

Since MICDocuments can contain more than one classifier the classifier must be named
“mailclassifier”’, and the output vector component for mail classification must be named
“mailfolder”. The categories must be numbered ascending, starting with 0.

Client

The client is named mice (“MIC Email classifier”). The source code for mice is shown in
appendix B. Mice reads mail from the command line. It requests a classification of the
mail from the server and writes it to the appropriate mail folder. In order to do this, it
reads its configuration information from file .mice_setup in the user’s home directory.
The first line of .mice_setup gives the name for a temporary file. Both the client and
the server must have access to this file. The following lines give the names and paths
of the mailfolders. The second line gives the name and path where mails belonging in
category 0 shall be stored. The third line gives the name and path where mails belonging
in category 1 shall be stored and so on. An example for a configuration file is shown in
figure A.2.

Mice is invoked by the MDA. Usually, procmail [28] is used for this. The entry in
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‘ MICClassifier ‘ ‘ MICClassifierDecisionTree ‘ ‘Mleﬂ
T T T
| o j I
classifyText("decision tree", "file://...")

dlassifyText("file/l...")

create("file://...")

Get Words
Return Words

,,,,,,,,,,,,,,,

Return Classification

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure A.3.: Sequence Diagram of processing a request to classify a text

the procamil configuration file . procmailrc is quite simple:

# :0 :
| mice

By this command, all incoming mail is piped to mice. MIC is ready for classification.
Whenever an email arrives, it is passed to mice. mice stores the email in the temproray
file given in .mice_setup. It asks classifier “mailclassifier” to classify this file in regard to
output vector component “mailfolder”: The following command issues the classification
request to MIC:

MICClassifier.classifyFile "mailclassifier" "mailfolder"
"file:///home/gb/tmp/new\_mail"

MIC returns the classification as an integer value from the domain of the output
vector component. Figure A.3 shows how this command is processed by MIC. From
the first part of the command name, MICBatch concludes that this is a batch command
for class MICClassifier. The request is passed to MICClassifier. MICClassifier
determines that this command is for the instance of MICClassifierDecisionTree called
“mailclassifier”. It passes the request to this class. This class creates a MICText object
with the text that shall be classified. It requests the words in the text, and classifies the
text based on the word frequencies. The MICText object is deleted, and the classification
returned.



B. Source Code of mice

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <assert.h>
#include <netinet/in.h>
#include <unistd.h>
#include <errno.h>
#include <pwd.h>
#include <netdb.h>
#include <string.h>

#define STRINGLENGTH 128

#define MAX_CATEGORIES 50

#define FALSE 0O

#define TRUE !FALSE

// This file store the setup of the socket interface when MIC is used
// as a socket. It contains the port number MIC is listening to, and
// is store din the user’s home directory

#define SOCKET_SETUP_FILE ".mic_socket_setup"

#define MICE_SETUP_FILE ".mice_setup"

//

// Global variables

//

unsigned nrCategories = 0;

// Stores names of the mailfolders

char category[MAX_CATEGORIES] [STRINGLENGTH] ;

// Mails are written to this file for classification
char tmp_file[STRINGLENGTH] ;

/**************************************************************************
*

* Establish connection to MIC server. A connected socket is returned
*
sk ok sk ok ok e ok e ok ke ok sk ok ok ook o ok e ok sk e ok ke o ok e sk ok ok sk sk ok sk s ok sk ook ok ok o ok o ok ok o ok ok o ok s ok ok ok ok ke ok ok ok ok s ok ok ok ke ok

*/

int establishConnection(){

112



113

struct hostent *server_hostent;
struct passwd *pw;

char *home_dir;

unsigned port;

char hostname[STRINGLENGTH] ;
char cookie[STRINGLENGTH] ;
struct sockaddr_in server_addr;
int sockfd;

char port_string[STRINGLENGTH] ;
FILE *CONFIGF;

// Get IP & port of server
pw = getpwuid(getuid());
if (pw){
home_dir = (char *) calloc((strlen(pw->pw_dir)
+ strlen(SOCKET_SETUP_FILE) + 1),
sizeof(char));
strcpy (home_dir, pw->pw_dir);
*x (home_dir + strlen(pw->pw_dir)) = ’/7;
strcpy(home_dir + strlen(pw->pw_dir) + 1, SOCKET_SETUP_FILE);
}
elseq{
fprintf (stderr, "Can’t locate user home directory.\n");
assert (FALSE) ;
}
CONFIGF = fopen(home_dir, "r");
if (!CONFIGF){
fprintf(stderr, "Can’t open %s.\n", home_dir);
assert (FALSE) ;
}
// Read cookie (used for authentification).
fscanf (CONFIGF, "%s", cookie);
if (Yhostname) {
fprintf (stderr, "Can’t read cookie from %s.\n", home_dir);
assert (FALSE) ;
}
// Read hostname
fscanf (CONFIGF, "%s", hostname) ;
if ('hostname){
fprintf (stderr, "Can’t read hostname from %s.\n", home_dir);
assert (FALSE) ;
}
// Read port
fscanf (CONFIGF, "Ys", port_string);
if (1port_string){
fprintf(stderr, "Can’t read port from %s.\n", home_dir);
assert (FALSE) ;
}
port = atoi(port_string);
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server_hostent = gethostbyname (hostname) ;
if (!server_hostent){
fprintf (stderr, "Error getting hostname entry for host %s.\n",
hostname) ;
assert (FALSE) ;

}

if ((sockfd = socket (AF_INET, SOCK_STREAM, 0)) == -1){
fprintf (stderr, "Error getting socket.\n");
assert (FALSE) ;

}

server_addr.sin_family = AF_INET;

server_addr.sin_port = htons(port);

server_addr.sin_addr = *((struct in_addr *) server_hostent->h_addr_list[0]);
bzero(&(server_addr.sin_zero), 8);

if (connect (sockfd, (struct sockaddr *) &server_addr,
sizeof (struct sockaddr)) == -1){

fprintf (stderr, "Error connecting socket.\n");
assert (FALSE) ;

}

// Connect. We have to authenticate

send (sockfd, cookie, strlen(cookie), 0);

send(sockfd, "\n", strlen("\n"), 0);

if (recv(sockfd, NULL, 0, 0) == - 1){
fprintf (stderr, "Could not authenticate with server.\n");
assert (FALSE) ;

}

return sockfd;

}

/3 s ke o sk ks ke s ks ke o ke o sk ke o s o ks s ok sk sk e e s e ks s ke s e o ke ke ke ke sk ke ok sk ke ks o sk o
%
* Read configuration
*
s o ke o ok sk ok sk o ke sk s ke ks s ke o e o sk ke ok sk o sk s ok ks ks o ke s o ok sk s ke o ek s ok sk ke ke sk sk ke ok sk ke ok sk o sk o

*/
void readConfiguration(){

struct passwd *pw;
char *home_dir;
FILE *CONFIGF;

pw = getpwuid(getuid());
if (pw){
home_dir = (char *) calloc((strlen(pw->pw_dir)
+ strlen(SOCKET_SETUP_FILE) + 1),
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/

sizeof (char));
strcpy (home_dir, pw->pw_dir);
*x (home_dir + strlen(pw->pw_dir)) = ’/7%;
strcpy (home_dir + strlen(pw->pw_dir) + 1, MICE_SETUP_FILE);
}
elseq
fprintf(stderr, "Can’t locate user home directory.\n");
assert (FALSE) ;
}
CONFIGF = fopen(home_dir, "r");
if (!CONFIGF){
fprintf(stderr, "Can’t open %s.\n", home_dir);
assert (FALSE) ;
}

fscanf (CONFIGF, "Ys", tmp_file);
while((nrCategories < MAX_CATEGORIES) &&
(fscanf (CONFIGF, "%s", category[nrCategories++]) != EOF));
nrCategories--;
fclose(CONFIGF) ;

ok s o o ok ok sl o s o ek o o ok sk e o o ok sk s sk ok ks s s ke ksl e ok sk o s ok ks sk ok ke ks s o e ksl sk s e ok sk sk e sk ok sk sk sk sk ok ok
%

* Write mail from stdin to tmp_file

L3

ok sk o o o ok ok ok ks o o o sk ok o o o k sk o o o k sk ok o o ks o o o ok sk sk o o ok ke o o ok ko sk o ok ko s o o sk ok s o ok ok ok o o ok k ok ok ok o

*/

void writeMailToTmpFile(){

}

/

FILE *TMPF;
int nextChar;
TMPF = fopen(tmp_file, "w");
if (Y TMPF){
fprintf(stderr, "Can’t open %s for writing.\n", tmp_file);
assert (FALSE) ;
}
while((nextChar = getc(stdin)) != EOF)
if (fputc(nextChar, TMPF) == EOF){
fprintf (stderr, "Error writing Y%s.\n", tmp_file);
assert (FALSE) ;
}
fclose (TMPF) ;

>k >k >k >k >k >k >k >k >k >k >k >k >k >k >k 3k 3k 3 3k 3k 3k dk 3k 3k 3k >k >k %k >k 3k 5k >k k¢ ¢ 3k k k 3k dk %k %k >k >k 3k 3k 3k 3k 3k k 3k >k >k >k >k >k >k 3k 3 3k 3k 3k 3k >k 3k >k >k >k >k > > 3 >k >k
*

* Write mail to category
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£
2k >k >k >k >k >k >k >k >k >k >k >k >k >k >k 3k 3k 3k 3k 3k 3k 3k 3k 3k k >k >k %k >k 3k 3k >k 3k 3k 3k 3k k k k %k %k >k >k 5k 3k 5k 3k 3k 3k 3k >k >k >k K K 3k 3k 3k 5k 5k 3k 3k >k %k >k >k >k >k 3 % % % >k >k
*/

void writeMail(int classification){

FILE *IN, *0UT;
int nextChar;

IN = fopen(tmp_file, "r'");

if (1IN){
fprintf(stderr, "Can’t open %s for reading.\n", tmp_file);
assert (FALSE) ;

}

OUT = fopen(category[classification], "a");

if (10UT){
fprintf (stderr, "Can’t open %s for writing.\n", categoryl[classification]);
assert (FALSE) ;

}

while((nextChar = fgetc(IN)) != EOF)
if (fputc(nextChar, OUT) == EOF){
fprintf (stderr, "Error writing %s.\n", tmp_file);
assert (FALSE) ;
}
fclose(IN);
fputc(’\n’, 0UT);
fclose(0OUT) ;
}

/] sk sk sk ok ke o ok sk ok sk e o ok sk sk sk kK ko o o o sk sk ok kK k3 ke o o o ok sk ok ok 3k k 6 e o ok o sk ok k kK k k e o o ok ok ok ok ok ok k k
*
* main
%
sk ke o o ok 3k kK o o ok 3k kK 3k o o o ok ok ok sk Kk K K ek o ook sk sk sk k kK ok o o o ok ok sk sk Kk K ko o o ok ok sk ok koK kK o ok o ok ok ok ok K

*/
int main(int argc, char *argv[]){

int sockfd;

char resultString[STRINGLENGTH] ;
char tmpString[STRINGLENGTH] ;
int tmp;

int classification;

int readResult;

// Read configuration and write mail to temporary file
readConfiguration();

writeMailToTmpFile() ;

// Ask MIC server to classify it

sockfd = establishConnection();
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snprintf (tmpString, STRINGLENGTH,
"MICClassifier.classifyFile \"mailclassifier\" \"mailfolder\" \"file:%s\"\n",

tmp_£file);
send (sockfd, tmpString, strlen(tmpString), 0);
tmp = 0;
// Receive classification
doA{
readResult = recv(sockfd, (void *) &resultString[tmp]l, 1, 0);
if (readResult == -1){
fprintf (stderr, "Error reading socket.\n");
assert (FALSE) ;
}
}while(readResult && (tmp < STRINGLENGTH - 1)
&& (resultString[tmp++] !'= ’\n’));

resultString[tmp - 1] = ’\0’;
classification = atoi(resultString);
// Write mail
writeMail(classification);

// Delete temporary file

unlink (tmp_file);

return 0O;



C. DTD

The following table shows the DTD for the XML-representation of MICDoc.

<!DOCTYPE mic [

1>
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<!ELEMENT

<!ATTLIST

<!ATTLIST

<!ATTLIST

<!ATTLIST

<!ATTLIST

<!ATTLIST

mic (outputVector+, outputVectorComponent+,
classification+, classifier+, text+, documentset+)>

outputVector name CDATA #REQUIRED

id ID #REQUIRED>

outputVectorComponent name CDATA #REQUIRED

id ID #REQUIRED

outputVectorRef IDREF #REQUIRED

lowerborder CDATA #REQUIRED

upperborder CDATA #REQUIRED

type CDATA #REQUIRED>

classification textref IDREF #REQUIRED

outputVectorComponentRef IDREF #REQUIRED

classifierref IDREF #REQUIRED

value CDATA #REQUIRED>

classifier name CDATA #REQUIRED

id ID #REQUIRED

class CDATA #REQUIRED>

text url CDATA #REQUIRED

id ID #REQUIRED>

documentsetref IDREF #REQUIRED>

documentset name CDATA #REQUIRED

id ID #REQUIRED>
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.mice setup, 110

.procmailrc, 111
calculateStatistics, 103
closeDocument, 102

est, 101

getDocumentAsXML, 102
newDocument, 101

new, 93-96

none, 97

openDocument, 102
printMostInformativeWords, 99
saveDocument, 102
setBordersTypelnt, 94
setDocumentSet, 93, 103
setLearningRate, 101
setNrHiddenNodes, 101
setOutputVector, 94, 98, 103
setReferenceclassifier, 103
setStripHTMLTags, 98
setTestClassifier, 103

setTypelnt, 94

setConvert HTMLSpecialCharacters, 99
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setConvertToLowerCase, 99
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setNrInputFeatures, 99
setReferenceClassifier, 99
setRelevantTags, 99
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setSplitEmailHeaderAndBody, 98
set TestingSet, 99

setTrainingSet, 99

test, 99, 100
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activation function, 28
agent, 82

agent mode, 92

automatic classification, 19

back propagation, 29
batch mode, 92

Bayes Theorem, 34
black box methods, 22

classified examples, 21
classifier
reference classifier, 21
combined classifier, 23
Comparison, Text Classification Sys-
tems, 61
convert to lower case, 58

decision lists, 69

Decision Tree, 24

definition
automatic classification, 19
classified examples, 21
combined classifier, 23
hybrid classifier, 23
learning from examples, 21
naive Bayes classifier, 35
reference classifier, 21
supervised learning, 21
text, 39
unsupervised learning, 21
word, 39

definition supervised learning, 21

definition unsupervised learning, 21

Email Classification, 15
entity relationship model, 87
entropy, 25
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ER, 87
expert system, 22

feature selection, 39

feed forward networks, 29
finite state automaton, 93
firewall, 109

FSM, 93

GPS, 13
hybrid classifier, 23

IDE, 101

incremental learning classifiers, 21
information, 25, 26

information content, 26
information gain, 26

input feature selection, 39
isomorphic, 40

KDE, 82
KDevelop, 101
KParts, 82
KQML, 83

learning classifier, 21

learning from examples, 21

learning methods
trainable, 20

MDA, 102, 110

menu bar, 102

MIA, 13, 82

MICApp, 102

MICBatch, 102
MICClassification, 95
MICClassifier, 96
MICClassifierDecisionTree, 99
MICClassifierNaiveBayes, 100
MICClassifierNeuralNetwork, 101
MICClassifierReality, 97
MICDoc, 101
MICDocumentSet, 93

mice, 110

MICOutputVector, 94

MICOutputVectorComponent, 93
MICStatistics, 102

MICText, 92
MIT-MAGIC-COOKIES, 109
MLC++, 60

Naive Bayes Classifier, 34
naive Bayes classifier, definition, 35
neural network
topology, 29
Neural Network
activation function, 28
sigmoid function, 28
Neural Networks, 27

overfit, 58
overfitting, 33

PDA, 13
plain text, 42
port, 109
procmail, 110

qt, 92
quoted printable, 58

Rainbow, 60

recall-rate, 66

reference classifier, 21

remove binaries, 59

remove special characters, 58
Requirements, Text Classifier, 17
Robust Bayesian Classifier, 59
RoC, 59

rule based, 38

SERpersonalBrain, 56, 60
sigmoid function, 28
software agent, 82

Spam, 15

stdout, 102

structural information, 11
structured text, 42
supervised learning, 20, 55
svmlight, 60
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TCP port, 109

text, see definition, text

tool bar, 102

topology, Neural Network, 29
trainable learning methods, 20

UCE/UBE, 15

UML, 87

Unified Modeling Language, 87
unsupervised learning, 20
URL, 89

Usenet, 11

Winner Takes All, 29
word, see definition, word
word-feature selection, 40

X, 109
XML, 64, 71, 82, 92



