Using Neural Networks and Genetic Algorithms as
Building Blocks for Artificial Life Simulations

Gerd Beuster!

Abstract

Artificial neural networks and genetic algorithms
are used very often in artificial life simulations. In
this paper we describe Artificial Life Environment
(ALE). ALE uses neural networks and genetic al-
gorithms, among other parts, as building blocks to
set up artificial life simulations.

Creating Simulations from Building Blocks

Writing software for artificial life simulations is
a complex, time-consuming and error-prone task.
With ALE (Artificial Life Environment) we are de-
veloping a tool to make the creation of simulations
easier. The basic idea of ALE is to set up a sim-
ulation from building blocks. Since many artificial
life simulations share common characteristics, these
common characteristics should be identified and en-
capsulated in interchangeable building blocks with
common interfaces. The advantages of this ap-
proach include:

e The process of writing simulations is sped up,
because with a common grounding, the re-
searcher can focus on his or her simulation,
and has not to bother with user interfaces de-
sign and other elements not central to the sim-
ulation, because these can be provided by the
simulation framework.

e The software contains less bugs if it is used
and debugged by a larger group of people.

e Software written for a specific problem is usu-
ally highly specialized and can only be used
by the people who programmed it. With
a common system, sharing simulation com-
ponents and results between groups of re-
searchers becomes easier.

Artificial Life Environment

ALE consists of a two parts. The main part is
a C++-class-hierarchy which provides the building
blocks for artificial life simulations. Custom build-
ing blocks are constructed by inheritance from the

base classes. The second part of ALE is a graph-
ical user interface which allows easy access to the
simulations created with ALE.

ALE focuses on (though it is not limited to) simula-
tions with populations of autonomous entities who
interact in a spatial environment. For this, ALE
provides four kinds of basic building blocks:

e Body

Artificial life simulations are usually driven
by autonomous entities. ALE has a build-
ing block for these, called Body. In each step
of the simulation, all Bodies are successively
given a chance to act. When an entity gets
activated, it examines its environment, and
decides on how to act. How the Body per-
ceives the environment, how it decides about
its actions, and which actions it can perform,
depends on how the researcher implemented
this building block.

Two other building blocks are provided
to help in the definition of the internal
structure of the Body: Chromosome and
NeuralNetwork.

e Chromosome

The Chromosome contains the genetic infor-
mation of the entity. This is usually a string
of integer or float point values, together with
crossover and mutation operators. How this
genotype information is reflected in the phe-
notype, for example who it influences the
strength or agility of the entity, depends on
how the Body building block is implemented.

e NeuralNetwork

The neural network is the “brain” of the en-
tity. The entity uses it to decide how to act.
It is the task of the Body to feed the informa-
tion about the current state of the entity and
its environment into the neural network, and
to interpret the result of the network’s calcu-
lation as an action. For example, the Body
might have a perception of the surrounding
telling it that some food-source is close by.
This information is converted into a format
that can be fed into the neural network. The

Body

Output:

Input:
[0, 0,0,0,0,1,0,0]
61

NeuralNet

Chromosome

Fig. 1: The steps an entity does when it gets acti-
vated: Examining its environment, calculating
the next activity, acting.

neural network calculates an output value.
The output value is interpreted as an action,
for example to move closer to the food source.

By subclassing from the base NeuralNetwork
class, the researcher can create variations of
this building block with different neural net-
work architectures and parameters.

e CellularAutomaton

The fourth and last building block for
ALE simulations provides the environment
of the entities. For this, we use a
CellularAutomaton. Our cellular automata
have — in difference to the commonly used
models — asynchronous update functions in-
stead of synchronous ones, and support in-
homogenous cells. Again, if the researchers
wants a different type of environment, he or
she can reimplement this class and use her
class instead as a building block for the sim-
ulation.

The interaction of these building blocks is shown in
figure 1. First, the entity examines its environment.
(In this example its Moore neighborhood.) This in-
formation is fed into the neural network. The result
of the neural network’s calculation is interpretated
as an activity. (In this case, to move in direction
South.)

An Example Simulation

Simulations are set up by combining these four
classes or subclasses of it. ALE has mostly been
used to simulate the co-evolution of populations
of predators and preys. In these simulations, the
predators and preys are special subclasses of Body.
They interpret their Chromosomes as instructions
on how to construct their NeuralNetworks. The
entities have a certain energy level which can raise

Arlificial Life Environment | X

g

e
EG?E

E_

;PI I

B |
Generation: 10
— —
Fig. 2: A screenshot from the predator-prey-

simulation. The lighter spots are the prey en-
tities, the darker spots are the predators.

or fall, depending on their actions. When the en-
ergy level of an entity drops below zero, it dies.
When the energy raises above a threshold, the en-
tity reproduces. In the reproduction process, the
Chromosome of the child is copied from the parents
Chromosome with some mutations.

There are four parameters affecting the energy
household of an entity:

1. The energy level at birth
2. The energy threshold for reproduction
3. The energy usage per move

4. The energy gain for eating other entities

An entity eats another entity when it moves on the
cell occupied by the other entity. The only differ-
ence between the Predator and the Prey subclass
of Body is that preys can not eat other entities, i.e.
they are not able to move on cells occupied by other
entities. Therefore, in order to survive, the prey-
entities have to have a negative energy consump-
tion. With negative energy consumption, an entity
gains energy on every move. We can think about
this as the process of taking energy from the envi-
ronment, like plants are faciliating sunlight. With
this setup, it must be the implicit goal of the preda-
tors to move onto cells occupied by other entities,
and the goal of the preys to move away from the

Fig. 3: From upper left to lower right: Six screenshots
of predators “fishing” for preys. There is a cir-
cle drawn around the predators who are using
the fishing-technique.

predators. Figure 2 shows a screenshot of the sim-
ulation.

The NeuralNet of the entities is defined by the
rest of the Chromosome. We used a very simple
scheme to encode the neural network. The struc-
ture of the networks is fixed. We use fully connected
feed-forward networks without shortcuts. The sin-
gle genes in the Chromosme define the weights of
the neural network’s connections. By using this
very simple scheme, we can not expect the evolu-
tionary process to generate very sophisticated be-
haviors. We can observe some improvement in the
behavior of the entities, though. One interesting
phenomenon to observe is a a rudimentary form
of cooperation. The predators start to “fish” for
preys by moving diagonally in rows. This form of
cooperation is quite efficient, because the predators
are systematically wandering over the Cellular Au-
tomaton, fishing for preys. In evolutionary terms,
it is also very easy to develop this kind of behavior.
When an entity reproduces, the new entity is placed
on a cell adjacent to the parent entity’s cell. The
only behavior the entities have to show is to always
move diagonally in the same direction. Figure 3
shows a sequence of updates in which predators use
the fishing-technique to hunt preys.

A second, more interesting phenomenon was ob-
served. When creating eco-system simulations,
there are many free variables. In our example sim-
ulation, we need sensible values for the original size
of the predator- and prey-population, and for the
energy-household of the entities. If these param-
eters are not well chosen, the eco-system breaks
down very quickly. Either, the preys vanish, fol-
lowed by the predators who find no more food, or
the predators die-out, and the preys take over the
whole CellularAutomaton. There are several ap-

[=] Population Size | X
Population Size
1200

AR P i
SR e

)

il 1000
Species: ra

Populstion Sizs

Close

Fig. 4: Development of the population sizes of
the predator- (upper line) and the prey-
populations (lower line) over 1000 generations.

proaches to solve this problem. One simple yet un-
satifsfying solution is to inject new entities when-
ever one of the populations is about to die out. This
keeps the simulation running, but is not a very nat-
ural approach to handel the problem. Another ap-
proach is to search for good parameter combina-
tions by apropriate search methods, for example by
a genetic algorithm.

Surprisingly, there is a very easy and natural solu-
tion to this problem. When we make the energy
household of the entitites subject to evolution, the
eco-system gets stable very quickly. This is done
by including the four parameters who govern the
energy household of the entities into the Chromo-
some. Figure 4 shows who quickly the population
sizes stabilizes when these parameters are subject
to evolution: After about 300 generations, the pop-
ulation sizes become quite stable. We see also a
phenomenon that can also be observed in natu-
ral eco-systems: The size of the prey-population
is somewhat larger than the size of the predator-
population.

Teaching

ALE has a number of features which make it very
well suited as a tool to teach general principles of
artificial life simulations. With ALE, a beginner
in the field of artificial life does not have to write
simulations from scratch. The clear structure of
ALE, in combination with a set of predefined classes
and a graphical user interface, allow him or her to
get a quick start into the field by playing with and
manipulating existing building blocks. The system
gives a direct, visual feedback.

Conclusions

ALE is still in alpha stage. When ALE has be-
come a more mature product, it will serve as a
valuable tool both for research and for teaching in

the field of artificial life. For researches, it pro-
vides a set of building block which allow to develop
a project without spending time on the program-
ming of low level features. The building block con-
cept also makes it easy to exchange parts of the
simulations and to compare simulation results. Ad-
ditonally, the developer gets tool for the analysis of
simulations.

In the realm of teaching artificial life, the graphi-
cal user interface and the already existing building
blocks allow the beginner in the field of artificial life
to get a direct experience for simulations and how
they are affected by different parameters, without
having to program a whole system.

The current version of ALE is available for down-
load at http://www.uni-koblenz.de/"gb/ale/. This
version is not ready for productive use. It is only of
interest for programmers who might want to par-
ticipiate in the development of the system.

References

[1] Gerd Beuster, Artificial Life Environ-
ment, Master’s thesis, University Koblenz-
Landau, Koblenz, 1999, http://www.uni-
koblenz.de/~gb/ale/studienarbeit_ale.ps.gz

[2] A. K. Dewdney, Simulated evolution: wherein
bugs learn to hunt bacteria, Scientific Ameri-
can, May 1989.

