
Formal Security Policy Models for Smart Card Evaluations

Gerd Beuster
Fachhochschule Wedel

Feldstraße 143
22880 Wedel, Germany

gb@fh-wedel.de

Karin Greimel
NXP Semiconductors Austria GmbH

Mikronweg 1
A-8101 Gratkorn, Austria

karin.greimel@nxp.com

ABSTRACT
For high security ICs, a security evaluation by an indepen-
dent institution is of great importance to strengthen the
confidence in the security of the product. Common Crite-
ria (CC) is a widely used evaluation method for security
products. In many countries, CC evaluations are required
by law for certain IT products. For high assurance, CC re-
quires a formal model of the implemented security policies.
We show how such a formal security policy model based on
temporal logic and model checking can be developed for the
real world evaluation of a Security IC. We argue that tem-
poral logics and model checking is suitable for the formal
requirements of a CC Evaluation Assurance Level 6 eval-
uation, because models and security requirements can be
developed by anybody with moderate knowledge of formal
methods. Additionally, proofs (or refutations) are generated
automatically.

Categories and Subject Descriptors
B.7 [Integrated Circuits]: Miscellaneous; F.4.1 [Theory
of Computation]: Mathematical Logic and Formal Lan-
guages—Temporal logic

Keywords
Common Criteria, EAL6, Security Policy Model, NuSMV,
Model Checking

1. INTRODUCTION
The Common Criteria for Information Technology Secu-

rity Evaluation (CC) ([2]) are an international standard for
the evaluation of computer security products. Common Cri-
teria provides different Evaluation Assurance Levels, ranging
from EAL1 to EAL7. Starting with EAL6, Common Crite-
ria requires a Formal Security Policy Model (FSPM) and a
proof that insecure states are unreachable. We developed
such an FSPM and the proofs for a Security IC. We decided

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’12 March 25-29, 2012, Riva del Garda, Italy.
Copyright 2011 ACM 978-1-4503-0857-1/12/03 ...$10.00.

to model the IC as a finite state machine and let a model
checker give the proof.

In general, a model checker takes a model and a formal
specification. It returns true if the model satisfies the specifi-
cation and false otherwise. Compared to other methods, like
interactive theorem proving, the advantage of our approach
is that model checking is fully automatic and constructive
refutations are provided in case proofs fail.

For our FSPM, we use the model checker NuSMV [3]. In
this paper, we show how parts of the security policies given
in the Security IC Platform Protection Profile [4] can be for-
malized for model checking. While developed for a concrete
product evaluation, we consider our formal definitions of se-
curity policies suitable for generalization to other products
and product types.

Related Work
Most of the publications describing a FSPM for CC use

theorem provers. For example, a FSPM was developed and
proven for the INTEGRITY-178B real-time operating sys-
tem using the ACL2 theorem prover [7]. The main policy
proven for INTEGRITY-178B was a policy about separating
operating system kernels called “GWV policy” [5], which is
very similar to the Access Control Policy in this evaluation.
The ACL2 theorem prover has also been used in the eval-
uation of the Rockwell Collins’ AAMP7G microcontroller
to show that it satisfies the GWV kernel separation crite-
ria [6]. Infineon verified the SAPM of their SLE 88 [8] with
the theorem prover Isabelle.

The NuSMV model checker, which is used in this evalu-
ation, has been used in a number of projects to proof se-
curity and safety properties, for example in formal model-
ing the FCS 5000 flight control system and the ADGS-2100
Adaptive Display and Guidance System, Operational Flight
Program (OFP) [7].

2. FORMAL MODEL OF THE IC
This section describes the model of the IC. The model is

based on Modes. Specific access rights to IC components are
associated with every mode, like access to certain memory
areas or coprocessors. At its core, it models these modes by
a state variable CPU. The range of this variable is shown in
Table 1. In User Mode, the IC controls access to memories
through the Memory Management Unit (MMU). The MMU
translates virtual to physical addresses.

Access is controlled in two ways. First, memory is split
into two parts. One part is available in Firmware Mode.
The other is available in System Mode and User Mode. Sec-

System State Description
SystemM Mode for execution of application pro-

grams. In this mode, all resources
available to application programs are
accessible.

UserM Restrictive mode for execution of ap-
plication programs. Accessibility of
resources is configurable in System
Mode. Memory access is moderated by
the MMU.

FirmwM Mode for emulating other Security
Smart Card products. The memory
used in this mode is completely sep-
arated from the memory available in
System Mode and User Mode.

Table 1: TOE Modes Description (excerpt)

ond, memory can be segmented into smaller areas and access
rights (readable, writable or executable) can be defined for
these segments.

The MMU Table stores memory access rights. Note that
the MMU Table itself is stored in memory. Therefore it is
possible to store an MMU Table in memory writable in User
Mode. In this case a User Mode process may manipulate the
MMU Table, possibly circumventing restrictions.

Modeling Memory Segmentation: MMU Tables
In order to abstract from the implementation details and

the complexity of multiple tables and processes at arbitrary
memory addresses, the following model is used: We explic-
itly model two user processes (process 0 and process 1) and
one memory segment only. We also do not use explicit mem-
ory addresses, but Boolean variables (mmuTableInSeg[0] and
mmuTableInSeg[1]) indicating that the process’ MMU table
is in the modeled segment or somewhere else. Also, details of
the MMU table data structure are not modeled. Only the
access rights are given by the variables MMUtable[0] and
MMUtable[1] which can be subsets of {r,w,x}. The values
represent read, write, and execute access, respectively.

Modeling Memory Partitioning: Firmware Firewall
The mechanism separating Firmware Mode from System

and User Mode is called “Firmware Firewall”. The Firmware
Firewall is modeled similar to the MMU. A state variable
FMcanAccessSegment indicates if Firmware Mode processes
have access to the modeled memory segment.

Modeling Operations
State transitions are triggered by operations. Operations

can be triggered by software running on the IC (e.g. memory
write operations), external events (e.g. an attacker manip-
ulating the IC), or internal events. The operations used in
the formal security policies given in Section 3 are shown in
Table 2.

3. SECURITY POLICIES
The TOE is evaluated according to the Security IC Plat-

form Protection Profile [4]. This Protection Profile defines
a number of Security Function Policies (SFP). Due to space
limitations, only the the Access Control Policy is shown
here. All theorems are given in the NuSMV specification
language [1]. The following theorems define the Access Con-

Operation Description
OpProc0SegmentWrite,
OpProc1SegmentWrite

User Mode process 0/1
writes to modeled memory
segment.

OpProc0SegmentAccess,
OpProc1SegmentAccess

User Mode process 0/1
accesses modeled memory
segment.

OpSMmemoryAccess System Mode process ac-
cesses modeled memory
segment.

Table 2: Operations (excerpt)

trol Policy.
All User Mode memory accesses are moderated by the

MMU. In User Mode, memory access is possible only when
the MMU table allows it (MMUtable[0] 6= none). Note that
here we do not distinguish between read, write, and execute
accesses. (Process 1 case is similar)

INVARSPEC
((CPU = UserM) ∧OpProc0SegmentAccess) →

(MMUtable[0] 6= none)

In the following formulas, the property that memory con-
tent does not change is represented by the statement

mmuTableInSeg[0] ∧ (MMUtable[0] = next(MMUtable[0]))

While this statement explicitly talks about changes in the
MMUtable of process 0, it can be interpreted as any change
in the memory segments accessible by process 0. (Process 1
case is similar.)

The MMU Table of a process may only change if the mem-
ory segment where the MMU table resides is writable by a
User Mode process. Note that we do not model changing an
MMU Table in System Mode, because the Access Control
Policy requires isolation of User Mode processes from each
other only.

INVARSPEC
((CPU = UserM) ∧ (next(CPU) = UserM)∧
(¬mmuTableInSeg[0]) ∧ (¬mmuTableInSeg[1])) →
((MMUtable[0] = next(MMUtable[0]))∧
(MMUtable[1] = next(MMUtable[1])))

In User Mode, the MMU table of a process does not
change unless it is writable by one of the user processes.
(Process 1 case is similar.)

INVARSPEC
((CPU = UserM) ∧ (next(CPU) = UserM)∧
mmuTableInSeg[0]∧
(MMUtable[0] 6∈ {w, rw,wx, rwx})∧
(MMUtable[1] 6∈ {w, rw,wx, rwx})) →
(MMUtable[0] = next(MMUtable[0]))

User Mode Processes are isolated from each other, i.e. one
process cannot write memory assigned to another process

unless explicitly permitted.

INVARSPEC
((CPU = UserM) ∧ (next(CPU) = UserM)∧
mmuTableInSeg[0]∧
(MMUtable[1] 6∈ {w, rw,wx, rwx})) →
((MMUtable[0] = next(MMUtable[0]))∨
OpProc0SegmentWrite)

The second part of the security properties of the Access
Control Policy define the separation between memory as-
signed to Firmware Mode and memory assigned to the other
modes.

When a memory segment is accessible in User Mode, it is
not accessible in Firmware Mode.

INVARSPEC
((OpProc0SegmentAccess) ∨ (OpProc1SegmentAccess)) →

¬FMcanAccessSegment

When a memory segment is accessible in System Mode, it
is not accessible in Firmware Mode.

INVARSPEC
OpSMmemoryAccess → ¬FMcanAccessSegment

When a memory segment is accessible in Firmware Mode,
it is not accessible in System Mode.

INVARSPEC
FMcanAccessSegment → ¬OpSMmemoryAccess

When a memory segment is accessible in Firmware Mode,
it is not accessible in User Mode.

INVARSPEC
FMcanAccessSegment →

¬((OpProc0SegmentAccess)∨
(OpProc1SegmentAccess))

Default values should be as restrictive as possible. For
User Mode MMU tables, that means that User Mode pro-
cesses should have no access rights at all after a reset.

INVARSPEC
(CPU = ResetM) →

((next(MMUtable[0]) = none)∧
(next(MMUtable[1]) = none))

4. MODEL CHECKING RESULTS
NuSMV [3] has been used for model checking. In the de-

velopment of the formal model and preliminary runs of the
model checker, nearly all proof obligations could be proven.
The proof obligations that failed initially fell into two cate-
gories: Some of them identified attack paths that are avail-
able before deployment of the TOE only. These attack paths
depend on certain activities while the TOE is in Test Mode.
In practice, these attacks are not relevant, because in the
deployment phase, Test Mode is no longer available. The
second class of spurious proof fails was due to simultaneous
access of MMU configuration parameters. Since these con-
ditions can occur only when two processes with the same
access rights interfere with each other, and since no privi-
lege escalation may result from these racing conditions, the
security policy is not violated in these cases. Therefore no

redesign of the TOE was necessary, even in the cases where
proofs failed initially. In these cases additional requirements
for the TOE environment (for example, the TOE must be
completely configured before leaving the factory) suffice to
satisfy all security requirements. Additional proof obliga-
tions not directly related to security functionality lead to
new insights into the working of the TOE and helped to
improve the TOE documentation.

5. CONCLUSIONS
We showed that the Security IC can not reach a state that

is not secure, using a model checker. The model checker
proved that the formal model of the IC implements the se-
curity policies.

Developing a Security Policy Model requires consistent,
unambiguous, and complete documentation. Thus, it does
not only add assurance in terms of mathematical proof but
also in enforcing accurate documentation.

Beside providing an FSPM for the Common Criteria eval-
uation of a concrete product, our approach can be general-
ized for formal models of other products and product types.

6. REFERENCES
[1] R. Cavada, A. Cimatti, C. Jochim, G. Keighren,

E. Olivetti, M. Pistore, M. Roveri, and A. Tchaltsev.
NuSMV 2.5 User Manual.

[2] Common Criteria for Information Technology Security
Evaluation Version 3.1 Revision 3, July 2009.

[3] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia,
M. Pistore, M. Roveri, R. Sebastiani, and A. Tacchella.
NuSMV Version 2: An OpenSource Tool for Symbolic
Model Checking. In Proc. Int. Conf. on
Computer-Aided Verification (CAV 2002), 2002.

[4] European Smart Card Industry Association
(Eurosmart). Security IC Platform Protection Profile
Version 1.0, June 2007.

[5] D. Greve, M. Wilding, R. Richards, and W.M. Vanfleet.
Formalizing security policies for dynamic and
distributed systems. In Systems and Software
Technology Conference (SSTC 2005), 2005.

[6] David S. Hardin. A robust machine code proof
framework for highly secure applications. In Proc. of
the 2006 ACL2 Workshop, 2006.

[7] Steven Miller. Will this be formal? Theorem Proving in
Higher Order Logics, pages 6–11, 2008.

[8] David von Oheimb, Georg Walter, and Volkmar Lotz.
A Formal Security Model of the Infineon SLE 88 Smart
Card Memory Managment. In Einar Snekkenes and
Dieter Gollmann, editors, ESORICS, volume 2808 of
Lecture Notes in Computer Science, pages 217–234.
Springer, 2003.

