Formal Specification of
Security-relevant Properties of User Interfaces!
(Extended Version)

Bernhard Beckert Gerd Beuster
{beckert |gb}@uni-koblenz.de

University Koblenz-Landau
Institut for Informatics

Abstract. When sensitive information is exchanged with the user of
a computer system, the security of the system’s user interface must be
considered.

In this paper, we show how security relevant properties of a user interface
can be modelled and specified using the Object Constraint Language
(OCL). First, we demonstrate how the input-output functionality of an
operating system can be modelled and formally specified. And second,
using a text-based email system as an example, we explain how input-
output-related security properties of an application can be modelled and
formally specified (and later on verified).

1 Introduction

A large part of the specification of interactive applications is concerned with
the relation between user input and the information shown to the user. For
example, when editing a text, the current (internal) state of the text should be
shown to the user, and user input should cause changes to the text. Usually, the
specification of user input and system output is rather informal. Specifications
declare that something “is shown on the screen” and the user “enters a text.”
In most cases, this informal description is sufficient. However, in security-critical
applications, a precise and formal definition is desirable. In this paper, we show
how security relevant properties of a user interface can be modelled, investigated,
and ensured using formal methods.

First, in Chapter 3 we demonstrate how operating system requirements can
be formalized for guaranteeing security against software-based man-in-the-middle
attacks. Then, in Chapter 4, we show how security-relevant usability aspects of
applications can be specified and—Dby proving that this specification is satisfied
by the implementation—verified. In the Verisoft project (www.verisoft.de),
our method is used to specify (and later on verify) an email system.

Though we only consider text-based user interfaces in this paper, our methods
can be extended for handling graphical user interfaces.

! This work was partially funded by the German Federal Ministry of Education, Sci-
ence, Research and Technology (BMBF) in the framework of the Verisoft project
under grant 01 IS C38. The responsibility for this article lies with the authors. See
www.verisoft.de for more information about Verisoft.

1.1 Related Work

So far, works on secure interface design usually do not use formal methods, while
formal methods for user interface specification do not take security aspects into
consideration. Our approach extends previous work by bringing together formal
methods for user interface specification with security-conscious design.

Abowd et al. [1] and Jain [7] give a survey of formal languages for the descrip-
tion of user interfaces. A well known model for this kind of interactive behavior
is the PIE model developed by Dix and Runciman [5]. In this model, system
behavior is defined as a function from commands issued by the user to effects
produced by the system. In case of a text-based user interface, the input is a
sequence of keystrokes and the output are characters displayed on the screen.

Non-static aspects of a system are usually modeled by state charts. In case
of text-based user interfaces, state transitions are triggered by user commands.
Depending on the methods chosen to model the user interface, the effects of
commands are either represented as states, or emitted as events [4].

In a number of works, formal specification methods like Z have been ap-
plied to user interface design. One of the first formal specifications of interactive
components was the specification of a text editor in Z in Sufrin’s paper “For-
mal specification of a display editor” [9]. Based on Sufrin’s specification, Booth
and Jones implemented an editor in the Miranda functional programming lan-
guage [2].

Besides formalizing user interface specification, two other aspects are im-
portant to our work. Interfaces for Human Computer Interaction (HCI) should
follow good design practices, as summarized e.g. in ISO 9241 [6], and security
considerations as given in [13]. For our work, we consider it most important that
(1) at all times the user is aware of the state of the system in all aspects relevant
to security, and that (2) the user gets clear feedback about the results of his or
her activities.

One of the few works on secure interface design for application programs is
Whitten and Tygar’s case study about the user interface of PGP 5.0 [12]. How-
ever, the focus of Whitten and Tygar is different to ours. They examine whether
the actual interface of a concrete application is suitable under security aspects,
while we are interested in how to formally specify the required properties.

2 Environment and Notation

We use the Object Constraint Language (OCL) for specification. The OCL con-
straints given in this paper should be understandable without deeper knowledge
of OCL.2 When object attributes and variables are referred to in an OCL post-
condition, the postfix “@pre” refers to the value of the attribute/variable in the
initial state before the function was called. See [10, 11] for more information on
OCL and [8] for the current language specification.

2 To make the constraints easier to understand for readers not familiar with OCL, we
sometimes use the standard mathematical notation instead of the OCL notation.
For example, we use z € list instead of list — contains(z).

In this paper, we model a text-based user interface. Input comes from the
keyboard and output goes to a terminal with a fixed number of rows and columns
for display of characters. Assuming no additional input from other sources (like
a mouse or network card), the behavior of a text-based application can be de-
scribed as a function from a (finite) sequence of keystrokes to a screen output.
That is, the behavior is specified by what is supposed to appear on the screen
after a particular sequence of keystrokes. In a text-based application with a
fixed screen size, screen output is a two dimensional array of characters. We
use keyboard to refer to keyboard input and screenAt to refer to screen out-
put. When we want to refer to a specific screen position, we use the notation
screenAt[z,y] for the character shown at screen position (x,y). Accordingly,
cursor At refers to the position of the cursor.

To refer to keyboard input up to resp. screen output at a particular point ¢
in time, we use keyboard(t) to denote the list of keystrokes entered up to time ¢,
screenAt(t) to denote the screen output at time ¢, and cursorAt(t) to denote
the position of the cursor at time t.

In a post-condition, ¢ refers to the current time, i.e., the point in time when
the function terminates, while t@pre refers to the point in time when the function
is entered. In this, we follow the common OCL syntax (though standard OCL
does usually not contain explicit references to particular points in time).

When we specify program functions, the return value of the function can be
an error code, indicating whether the operation was successful. As usual in OCL,
we refer to the result of a function call by “result” in post-conditions.

OCL has the shortcoming that it does not make any assumptions about
system properties that are not explicitly modeled (frame problem). To solve this
problem, we (implicitly) add the following to our specifications: All functions
cause only those effects explicitly mentioned.

When functions refer to one- or two-dimensional lists or strings, we use the
usual []-notation to refer to elements. That is, string[0] is the first character of
string, string[1] is the second, and so on.

A number of auxiliary functions are used to refer to certain properties of the
system. These auxiliary functions are defined in Table 1.

3 Specifying Operating System Requirements

3.1 Overview

The operating system provides interfaces between application programs and the
hardware. In the case of simple, text-based user interfaces, which we are exam-
ining in this paper, the operating system has to provide access to two resources:
the keyboard and the screen. Most work on secure interface design assumes
that the application runs in a safe and friendly environment. Although some
work takes attacks on input/output facilities from the outside into account, in-
terference with the input/output facilities from within the system (by trojans,
worns, viruses, etc.) is usually not part of the attack scenarios. Here, we assume
that the security critical application is running in a multi-process environment,
where hostile processes may launch attacks on input/output facilities. Therefore,

of the list keyboard of keystrokes
was entered

Name Description First used in
screenWidth() Width of screen Chapter 3.2
screenHeight() Height of screen Chapter 3.2
string At(t)[z,y] = s|Boolean function returning true|Chapter 3.2

if for all 0 <n < |s|:

screenAt(t)[z + n, y] = s[n|
key(c) The character code of ¢, where c|Chapter 3.3

is an element of the list keyboard

of keystrokes
timestamp(c) The time at which an element c¢|Chapter 3.3

Table 1. Auxiliary functions

we provide software-based criteria for trusted input/output facilities
curity perimeter”, i.e., the boundary of the secure part of the system is pushed
outwards. We provide a formal method that guarantees security against software
based man-in-the-middle attacks. Note, that our approach does not help against
hardware-based attacks like faked keyboards placed by the attacker on top of

the actual keyboard.

. The “se-

At this point we are not concerned with secrecy. We do not guarantee that
no information is leaked to a third party. We only guarantee observability, i.e.,
all security-relevant aspects of the system are visible to the user.

3.2 Specifying Screen Output Functions

Below, we give constraints specifying the operating system functions for accessing
the screen. These constraints use the functions screenAt, cursor At (as described
in the previous section), and the auxiliary functions from Table 1.

then

else

endif

context setChar (character, x,y)
post if ((x > 0) and (x < screenWidth()) and
(y > 0) and (y < screenHeight()))

screenAt(t)[x,y] = character and
result = CHAR_SET_OK

result = POSITION_OUT_OF_BOUNDS

context setCursor(x,y)
post if ((x >0) and (x < screenWidth()) and
(y > 0) and (y < screenHeight()))
then
cursorAt(t) = (x,y) and
result = CURSOR_SET_OK
else
result = POSITION_.OUT_OF_BOUNDS
endif

3.3 Specifying Keyboard Input Functions

Since user input comes from the keyboard, we can identify all user input during
the lifetime of the application with a list of keystrokes, where a keystroke is
a character (a character code) associated with a timestamp. As described in
Chapter 2, keyboard(t) denotes the list of keystrokes entered up to time ¢.

Usually, computer systems have an input buffer. This buffer is filled with the
user’s keystrokes independently of the current application’s activity. When the
application calls the operating system function for retrieving the next keystroke,
the first keystroke of the keyboard buffer is returned. In the scenarios we are
modeling, however, the use of a keyboard buffer is often not advisable. From the
view of security, we want that the user approves or denies an activity only after
he or she is aware of the options available. With a keyboard buffer, a user may
enter commands that are executed at a later point in time. It could then happen
that the user approves or denies an activity before the available options are shown
to him or her. Therefore, we define the operating system function getkeystroke
without using an input buffer. The function getkeystroke is specified to return
the next character typed after its invocation.

Note, however, that it is possible to add operating system functions that
make use of a keyboard buffer, or to make the keyboard buffer an explicit part
of the application. For this, one would define two queues, one containing the
keystrokes processed up to time ¢, and one containing the pending keystrokes at
time ¢.

We use the auxiliary functions key and timestamp from Table 1 to access
the character (code) of the keystrokes resp. the time when it was received.

context getkeystroke()
post result € keyboard(t) and
timestamp(result) > tQpre and
not 3k € keyboard(t) :
(timestamp(k) > tQpre and
timestamp(k) < timestamp(result))

3.4 Specifying Security-relevant Properties

Under security aspects, a key requirement for a system using keyboard input
and screen output is the impossibility of man-in-the-middle attacks against the

keyboard and the screen. If an attacker can get in between the legitimate appli-
cation and its input/output facilities, the attacker can manipulate the user at
will.

There is no easy way to prevent physical man-in-the-middle attacks like, for
example, covering the real keyboard with a faked keyboard as described in [3].
However, the prevention of software-based attacks with trojans, worms, viruses
etc. is possible if the operating system provides means to guarantee exclusive
access to the keyboard and screen. We call the process of acquiring exclusive
access “locking” and the release of the lock “unlocking.”

We consider information on whether screen and keyboard are locked and by
which process to be part of the current configuration (i.e., the status) of the
operating system. In the specification of requirements for the operating system,
one has to refer to this information and other configuration details. For that
purpose, we assume the relevant parts of the operating system configuration to
be stored in a data structure (a class) 0SConf with the following class attributes:

0SConf.screenlLocked
0SConf .keyboardLocked
0SConf.ioStatus

0SConf . screenLocked and 0SConf . keyboardLocked contain the process IDs (PIDs)
of the processes locking the screen resp. the keyboard. A PID of 0 means that
the resource is not locked. The third attribute 0SConf.ioStatus can have the
values busy and waiting. It indicates whether the system is busy or is wait-
ing for input. While it is busy, all input is discarded (see comment about input
buffers in Chapter 3.3).

Locking a resource is not sufficient to guarantee security. The user must
also know which process locks a resource and whether the system is busy or
not. Therefore, the operating system configuration must be shown to the user
represented by a string of characters. We assume this string representation to
be given by the function

0SConfString : 0SConf — String ,

which we do not further specify here. It must return a string that allows the user
to determine the exact operating system configuration. Its actual implementation
depends, for example, on the language(s) the user is supposed to understand.

We assume that the first line of the screen is reserved for information on
the operating system configuration, i.e., the first line should be identical to
OSConfString(0SConf). By not allowing processes (other than the operating
system) access to row 0, the changed specifications of setChar and setCursor
given below assure that the configuration information cannot be overwritten by
any user applications nor attacking processes.

We specify the correct display of the operating configuration resources as an
invariant of 0SConf:

context 0SConf
inv stringAt(t)[0,0] = OSConfString(0SConf)

In the following constraints, PID refers to the PID of the current application.
We start by specifying operating system functions for locking and unlocking
screen and keyboard:

context lockscreen()
post if 0SConf.screenlLocked@pre = 0
then
0SConf .screenLocked = PID and
result = SCREEN_LOCKED_OK
else
result = SCREEN_LOCKED_BY_OTHER
endif

context unlockscreen()
post if 0SConf.screenLocked@pre = PID
then
0SConf .screenLocked = 0 and
result = SCREEN_UNLOCKED_OK
else
result = SCREEN_LOCKED_BY_OTHER
endif

context lockkeyboard()
post if 0SConf.keyboardLocked@pre = 0
then
0SConf .keyboardLocked = PID and
result = KEYBOARD_LOCKED_OK
else
result = KEYBOARD_LOCKED_BY_OTHER
endif

context unlockkeyboard()
post if 0SConf.keyboardLocked@pre = PID
then
0SConf .keyboardLocked = 0 and
result = KEYBOARD_UNLOCKED_OK
else
result = KEYBOARD_LOCKED_BY_OTHER
endif

Now we proceed to re-specify setChar, setCursor, and getkeystroke to
obey the locking mechanism and to protect the status line (line 0 of the screen).

context setChar (character, x,y)
post if not 0SConf.screenLocked = PID
then
result = SCREEN_LOCKED_BY_OTHER
else if ((x > 0) and (x < screenWidth()) and
(y > 1) and (y < screenHeight()))
then
screenAt(t)[x,y] = character and
result = CHAR_SET_OK
else
result = POSITION_OUT_OF_BOUNDS
endif

context setCursor(x,y)
post if not 0SConf.screenLocked = PID
then
result = SCREEN_LOCKED_BY_OTHER
else if ((x > 0) and (x < screenWidth()) and
(y > 1) and (y < screenHeight()))
then
cursorAt(t) = (x,y) and
result = CURSOR_SET_OK
else
result = POSITION_OUT_OF_BOUNDS
endif

context getkeystroke()
post if not 0SConf .keyboardLocked = PID
then
result = KEYBOARD_LOCKED_BY_OTHER
else
result € keyboard(t) and
timestamp(result) > tQpre and
not 3k € keyboard(t) :
(timestamp(k) > tQpre and
timestamp(k) < timestamp(result))
endif

4 Security of Interactive Applications

4.1 Overview

In Chapter 3, we showed how to specify security-relevant properties of input/output
functions provided by an operating system. By ensuring and verifying these
properties, certain types of software-based man-in-the-middle attacks can be
prevented.

There are, however, other essential aspects of a secure software system. In this
chapter, we are going to introduce a method for specifying properties of appli-
cations that are desirable both for security and usability. Namely, the following
properties are considered:

1. The user is always aware of the state of the system.
2. User input is only possible if the screen output is consistent.
3. Results of user actions are communicated to the user.

Not Sign Text
Signed

Signed
[Key Available]

Fig. 1. State Chart Example

On an abstract level, the behavior of text-based interactive applications can
be described using state charts. Edges are labeled with keystrokes, guard condi-
tions, or both, as shown in Figure 1. In this example, the system transits from
state to state if the command “Send Email” is issued and the
guard condition “Message not Empty” is satisfied. Of course, the states in such
as state chart are abstractions of the application’s actual internal configuration,
which is much richer in detail. Nevertheless, we assume that these states are the
right abstraction in that the user has sufficient information about the internal
configuration of the application if he or she knows in what abstract state the ap-
plication is. Since, as said above, we also want the user to know what the result of
the last issued command was, we define the configuration Conf of the application
to contain—besides an application-dependend part Conf .applicConf—the last
issued command Conf.command, and the result Conf.commandResult of that
command, which can take the special valued none if the command is not yet
completed (see Table 2).

Conf . command |Last issued command

Conf .commandResult|Result of last command

Conf . applicConf |Application-speciﬁc part of configuration
Table 2. Configuration of an application.

Now, two aspects of the application have to be specified:

1. The way in which the configuration is related to screen output; and how
keyboard input corresponds to commands.

2. The effect that the execution of a command has, which must implement the
abstract behavior specified by the state chart.

4.2 Specification of Input/Output Behavior

For the specifiation of the first aspect (input and output), we assume the follow-
ing to be given (see Table 3):

— stateAsString(state) is a string that allows the user to determine what the
state of the application is.

— resultAsString(commandResult) is a string that allows the user to determine
what the result of the last issued command is.

— screenOutput(applicConf) is a two-dimensional array of characters. It con-
tains the correct screen output corresponding to applicConf. Its dimensions
are screenWidth() and screenHeight() — 3.

— command(char) is the command that is issued by entering char on the
keyboard.

We demand that stateAsString(state) is shown on the second line of the screen,

and resultAsString(commandResult) on the third line (remember that the first

line is reserved for the operating system’s status line), which is why screenOQutput(applicConf)
must have a height of screenHeight() — 3.

Name Description

stateAsString |Textual representation of the state
resultAsString | Textual representation of a command result
screenQutput |Screen output for a configuration

command Command issued by entering a character

state State abstraction of a configuration

newState Next state when a command is issued in a certain
configuration

result Result of a command in a certain configuration

Table 3. Functions specifying an application.

Thus, the function updateScreen can be specified as follows. It is the appli-
cation’s function for updating the screen contents (using the operating system
function setChar).

context updateScreen()
post stringAt(t)[0,1] =
stateAsString(Conf . state) and
string At(t)[0,2] =
resultAsString(Conf . commandResult) and
Vk € {3,...,screenHeight() — 1} :
string At(t)[0, k] =
screenQutput(Conf . applicConf)[k]

4.3 Specification of Command Execution

For the specification of the second aspect (command execution), we assume the
following to be given (see Table 3):

— state(applicConf) is the state abstraction of the application configuration.

— newState(applicConf, command) specifies the state transition. (It has applicConf
as an argument and not, as one might expect, the abstraction state(applicConf),
because it depends on guard conditions that can only be evaluated using the
concrete application configuration.

— result(applicConf, command) is the result of executing command when the
application is in configuration applicConf.

Now, the function execute can be specified. It executes a command and
implements the state transition by changing the application configuration.

context execute()
post state(Conf .applicConf) =
newState(Conf . applicConf@pre,
Conf . command@pre)
Conf.commandResult =
result(Conf . applicConf@pre,
Conf . command@pre)

4.4 The Application’s Main Algorithm

Now, we have everything at hand to describe how the main algorithm of the
application works: First, screen and keyboard are locked. Then, in the main
loop, commands are read and executed while keeping the screen updated. These
steps are arranged in the following way:

— Screen and keyboard are locked immediately on program start and unlocked
when the program quits. If locking the screen or the keyboard fails, the
program terminates.

— Whenever the program is waiting for user input, the screen is up to date.
Commands can be issued only when the system is waiting. All keystrokes
entered during processing are discarded. By this we ensure that the user
issues a command only when the current configuration of the system is visible
on the screen.

— When processing is finished, the loop starts over again unless the user has
issued the command “quit.”

A state chart for the main execution loop is shown in Figure 2. Corresponding
pseudo is given in Algorithm 1.

The consistency of the screen output follows from the algorithm and the spec-
ification of getkeystroke. The screen is up to date when the system is waiting
for user input, and immediately after user input, and it may be inconsistent in
between. Since the operating system displays status information “waiting” when
the system is waiting for user input and “busy” when it is not, the user knows
when the display must be consistent (whenever the system is waiting for user
input). The situation would become more complicated if we used an input buffer.
In that case, there is no longer a direct relationship between waiting/busy status
and the consistency of screen output. It would be necessary to show an extra
“consistency flag” on the screen.

Lock
Keyboard
& Screen

Get
Command

Update
Screen

Execute
Command

Fig. 2. State chart for the application’s main algorithm (see Algorithm 1).

Algorithm 1 The application’s main algorithm

1: if not (lockkeyboard() = KEYBOARD_LOCKED_OK) then
2: Exit

3: end if

4: if not (lockscreen() = SCREEN_LOCKED_OK) then

5 Exit

6: end if

7: {0SConf .screenLocked = PID and 0SConf.keyboardLocked = PID}
8: repeat

9: updateScreen()

10: Conf.command = command(key(getkeystroke()))

11: Conf.commandResult = none

12: updateScreen()

13: execute()

14: until Conf.command = QUIT

5 Conclusions and Future Work

In Chapter 3 we gave a formal specification for text-based input/output functions
of an operating system. This formalism can be extended to other input/output
devices, e.g., card readers and graphical terminals. Additionally, we showed how
to protect against software-based attacks on input/output resources. These secu-
rity measurements require special functionality of the operating system. It must
be able to grant processes exclusive access to input/output resources. Moreover,
dedicated screen areas must be provided for information on who is locking the
resources. This area must not be writable for anybody except the operating
system.

The method we propose does not make any claims about what happens
outside the realm of software. It cannot guarantee that an output device operates
as intended, nor can it prevent tempering with the hardware of input/output
devices.

In Chapter 4, we described a state-chart-based method for the formal spec-
ification of interactive applications. This formalism takes both security and us-
ability aspects into consideration.

Our future work will go into two directions: As part of the Verisoft project
(www.verisoft.de), the methods introduced in this paper are used to formally
specify an email client. In Verisoft, both the operating system and the application
program will be formally verified based on that specification.

The other direction of further work is to develop formal methods for the
specification of applications that have richer user interfaces than a purely text
based interface.

References

1. G.D. Abowd, J. P. Bowen, A. J. Dix, M. D. Harrison, and R. Took. User interface
languages: A survey of existing methods. Technical Report PRG-TR-5-89, Oxford
University Computing Laboratory, October 1989.

2. S. P. Booth and S. B. Jones. A screen editor written in the miranda functional pro-
gramming language. Technical Report TR-116, Department of Computing Science
and Mathematics, University of Stirling, February 1994.

3. L. Bussard and Y. Roudier. Authentication in ubiquitous computing. In UBI-
COMP 2002, Workshop on Security in Ubiquitous Computing, G6teborg, Sweden,
September 2002.

4. A.Dix and G. Abowd. Modelling status and event behaviour of interactive systems.
Software Engineering Journal, 11(6):334-346, 1996.

5. A. J. Dix and C. Runciman. Abstract models of interactive systems. In P. Johnson
and S. Cook, editors, HCI’85: People and Computers I: Designing the Interface,
pages 13—22. Cambridge: Cambridge University Press, 1985.

6. International Organisation for Standardization. ISO 9241. Ergonomic requirements
for office work with visual display terminals (VDTs), 1992-2001.

7. V. Jain. User interface description formalisms. Technical report, McGill University
School of Computer Science, Montréal, Canada, 1994.

8. Object Modeling Group. Unified Modelling Language Specification, version 1.5,
Mar. 2003.

10.

11.

12.

13.

B. Sufrin. Formal specification of a display editor. Science of Computer Program-
ming, pages 157-202, 1982.

J. Warmer and A. Kleppe. OCL: The constraint language of the UML. Journal of
Object-Oriented Programming, 12(1):10-13,28, Mar. 1999.

J. B. Warmer and A. G. Kleppe. The Object Constraint Language: Precise Modeling
With UML. Addison-Wesley Professional, 1998.

A. Whitten and J. Tygar. Usability of security: A case study. Technical report,
School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA,
1998.

K.-P. Yee. User interaction design for secure systems. In Proceedings of the In-
ternational Conference on Information and Communications Security, Singapore,
2002. www.sims.berkeley.edu/"ping/sid/uidss.pdf.

