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E-mail: researchreports@uni-koblenz.de,
WWW: http://www.uni-koblenz.de/fb4/





Automatic Classification for the
Identification of Relationships in a

Metadata Repository

Gerd Beuster Ulrich Furbach Margret Gross-Hardt Bernd Thomas
Universität Koblenz-Landau, Universitätsstr. 1, 56070 Koblenz, Germany
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For a major company a prototype for automatic detection of similar objects in
database systems has been developed. This task has been accomplished by trans-
ferring the database object classification problem into a text classification problem
and applying standard classification algorithms. Although the data provided for the
task did not look promising from a technical point of view, the results turned out to
be very good.

1 Introduction

Large companies manage huge amounts of data (i.e. data about their customer base, their sup-
pliers, products etc.). Usually, there are many databases and applications that store and provide
these data. Since these databases have been developed and managed independently, they are
often heterogeneous in logical structure, attribute naming and semantics.

Nowadays, companies face the need for an integrated view on their data. That is, they want to
understand the relationships between data in different databases or between applications using
the same database. Detecting similar objects and relationships between objects is a crucial inte-
gration task in enterprise application integration and business-to-business applications. In order
to achieve these goals, heterogeneities within the data stored in different databases have to be
recognized or even resolved.

There are various approaches how to deal with heterogeneous data sources. Some are more
tightly coupled and define common views on multiple data sources, whereas more loosely cou-
pled approaches maintain the autonomy of different distributes databases [Sheth & J.Larson,
1990; Bouguettaya, Benatallah, & Elmagarmid, 1998].
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A recent development is the creation of meta data repositories to manage meta data about
systems, databases and the data therein [Marco, 2000]. Meta data repositories play the role of
information brokers and provide applications and users with the information necessary to de-
termine dependencies between data sources. A meta data repository contains information about
objects, tables and relationships in the various databases used in a company. It uses this infor-
mation to analyze business processes, to provide information about marketing campaigns etc.
The amount and accuracy of the meta data is critical for the quality of the meta data repository.
Since most databases used in a company are developed independent of each other, information
about the same real world entity—e.g customer name and address information—is stored mul-
tiple times at different places, under different names and in different formats. In order to make
the conglomerate of different database structures manageable and to avoid inconsistencies, these
kind of dependencies should be detected and stored in the meta data repository.

The success of a meta data repository is based on the accuracy and completeness of the data.
It has to be maintained continuously. This requires a lot of additional work, because meta data
usually is maintained manually. When a set of new objects is to be added to the meta data
repository, an expert uses her knowledge about the meta data repository and the new objects in
order to add it.

In order to reduce the amount of work needed to maintain a meta data repository, the company
wizAI did a study on how this process can be automated and developed a prototype. The proto-
typical system aids the user in adding database objects to the meta data repository. When a new
object is added to the repository, the automatic classification system lists potential relationships
of the object to other objects. A human is still needed to decide if the suggestions of the system
are correct, but a lot less expert knowledge and time is required by the human.

For this task, wizAI adapted a text classification tool developed by University Koblenz-
Landau AI Research Group. It turned out that after some transformation of the input data,
standard automatic classification methods were able to identify dependencies between database
objects with a very high precision.

In the following sections, we give a detailed definition of the task, we show how the problem
can be solved by transferring it into a text classification problem, we give some example results,
and show the design of the system developed to automate this task.

2 Preliminaries

Next, we give a formal definition of the scenarios and the other concepts we are using throughout
this paper. We will use the following terms: Object for an entity of a domain, e.g. a system,
data model, business object, etc. Let O1, . . . , On be objects. Each object has a number of
characteristics A1, . . . , Am called attributes. An object is characterized by its attributes. We
write this characterization as < Oi.A1, . . . , Oi.Am >

Objects of the same kind are of the same object type. The type of an object is an attribute of
the object.
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(43,Repository Root, Repository Root 4, 1900-01-02, 3000-01-01, PDREP 2001-03-04,
BREX V5, 2001-07-23, PD, PD1)
(1213, Mandant,Mandant, 33, 1900-01-01, 3000-01-01, OAI8PV, 2001-11-22,,)
(45, PPS-Z, PPS-Z, 282, 1900-01-01, 3000-01-01, BREX, 2001-03-07, HKAZJA, 2001-10-31)

Figure 1: Example: Some objects. Each tuple represents one object and table entry. An object
is defined by its attributes.

(195, 326, 330, 1900-01-01, 3000-01-01, BREX V5, 2001-07-03)
(97, 23, 75, 1900-01-01, 3000-01-01, JBI7LRE, 2001-03-13, BREX, 2001-04-17)
(96, 84, 86, 1900-01-01, 3000-01-01, JBI7LR, 2001-03-29, BREX, 2001-04-06)

Figure 2: Example: Relationships between objects: First argument of each tuple is the relation-
ship type, second and third are the two objects.

In the following, we deal with typed relationships R over a set of objects S = {O1, . . . , On}.
R is a subset of {(Oi × Oj × t)|Oi, Oj ∈ S, 1 ≤ t ≤ n}. We call the third element of the triple
the type of the relationship. n is the total number of relationship types. We are only dealing with
typed relationships in the rest of this paper.

Examples for objects are given in Figure 1, and examples for relationships between objects
are given in Figure 2. It should be noted that the database objects are descriptions of data types,
not actual instances of databases entries. In the context of a relational database, the objects are
the top rows of each table (which define the table’s attributes), not the table’s entries in the rest
of the rows.

A meta data repository is a set of objects, together with a set of typed relationships over these
objects: M = (S,R).

3 Problem definition

The classification task was to identify relationships between database objects. We were provided
with a list of relationship types, with descriptions of database objects, and with some information
about relationships between objects. Figures 1 and 2 give examples for the kind of information
provided. To support the user in identify relationships between database objects, two typical
usage scenarios were identified.

3.1 Identifying Relationship Types

The first scenario models the situation where the user has identified two objects which might
be in one or more relationships to each other. The system should make suggestions about the
potential kinds of relationships between the objects. Since the number of relationship types is
fairly large (in the example data provided by the client, there were about 100 relationship types),
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Figure 3: Scenario 1

an aid of this kind can significantly speed up the process of updating the meta data repository
with new data. Scenario 1 can be formally defined as follows:

Definition 1 (Scenario 1) Given two objects O1 and O2, and a meta-data-repository M =
(S,R) with O2 ∈ S, find all potential relationships P that might hold between O1 and O2,
and present them to the user. The user selects P ′ ⊆ P . An extended repository M ′ is created by
adding these relationships: M ′ = (S ∪ O1, R ∪ P ′).

3.2 Identifying Relationship Partner Objects

In scenario 1, the user has to decide if two given objects are in one or more relationships with
each other, and the system aids the user in deciding which relationships are applicable. Sce-
nario 2 removes the first requirement. In scenario 2, the user presents a single object to the
system, and the system returns a list of other objects from the meta data repository together with
the potential relationships between the given objects and the objects found by the system.

Definition 2 (Scenario 2) Given an object O1 and a meta-data-repository M = (S,R), find
all potential relationships P that might hold between O1 and some O2 ∈ S, and present them
to the user. The user selects P ′ ⊆ P . An extended repository M ′ is created by adding these
relationships: M ′ = (S ∪ O1, R ∪ P ′).
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Figure 4: Scenario 2

3.3 Problem Discussion

There is an obvious relationship between scenario 2 and scenario 1: In scenario 2, each object
from the meta data repository is combined with the new object and run through scenario 1. Thus
Scenario 2 can be reduced to scenario 1 by algorithm 1.

Algorithm 1 Reduction of scenario 2 to scenario 1
Require: O1 is the new object, and P = {}

for all O2 ∈ S do
Pnew = P ∪ {r|r ∈ result of running O1 and O2 through scenario 1}
P = Pnew

end for
Ensure: P contains all potential new relationships between O1 and another object

We assume independence between the relationship types. This means, in order to decide if a
given object is in a certain relationship with some other object, we do not take into consideration
if the object is in some other relationship with the same or a third object. Therefore, we can treat
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each relationship type separately.
By treating all relationships separately, the problem of scenario 1 is reduced as follows: Given

two objects, decide if they are in the given relationship or not. Thus, the input for the classifier is
a tuple of two objects (O1, O2), and the output a binary value indicating whether the two objects
are in relationship with each other or not.1 Algorithm 2 shows this classification process.

Algorithm 2 Classification in scenario 1
Require: A meta data repository M = (S,R); T is the set of relationship types in M ; an object

O2 ∈ S; a new object O1; P = {}
for all t ∈ T do

Mt = (S,Rt), Rt = {(Oa, Ob)|(Oa, Ob, t) ∈ R}
Let Ct be a classifier trained on Mt

if (O1, O2) potentially in relationship t according to Mt then
Pnew = P ∪ {(O1, O2, t)}

else
Pnew = P

end if
P = Pnew

end for
Ensure: P contains all potentially new relationships

Figure 3 shows this scenario: The objects are combined and transfered into a feature repre-
sentation. This feature vector is classified by each of the classifiers for the various relationship
types. (Note that these classification can be done in parallel for all relationship types.) The
classification results of all classifiers are presented to the user.

In scenario two, the user provides an object and is interested in all objects which might be in
relation to this object, and the types of these relations.

For scenario 2, algorithm 2 and algorithm 1 could simply be combined. Following this naı̈ve
approach is not advisable for two reasons: Since the new object has to be checked against all
existing objects for all relationship types, with N objects and R relationship types in the meta
data repository, N × R classification would be necessary for each new object. This does not
only increases the complexity of the classification process, we must also assume that there will
be quite a number of false results (see Section Results for classification results).

For these reasons, the classification process in scenario 2 (depicted in Figure 4) is split into
two parts: In the first step, the object is used as the input data of the classification process, and the
result is a (possible empty) set of relationship types. The object might have relations of the given
types to other objects. In the second step, the classification system draws each of the objects from
the meta-data-repository (in the figure shown as object 2), and feeds the combination of the two

1It would also be possible to give a confidence value indicating how likely it is that the two objects are in the given
relationship.



4 Transforming the problem into a text classification problem 7

objects into all the classifiers for the relationship types from step one (scenario 1). Since the
new object has to be checked against all other objects, the number of classifications to compute
is proportional to the number of objects already in the meta data repository. So the difference is
that the new object is not checked for all relationship types with all other objects, but also for a
reduced set of relationship types which look promising.

4 Transforming the problem into a text classification problem

The main idea of our approach is to assume that database objects are similar to text objects,
as the example objects in Figure 1 show. Since the field of automatic text classification is well
researched, we decided to adapt a system for automatic text classification for the database classi-
fication problem. wizAI uses MIC, a text classification system developed at University Koblenz
AI Research Group, which is especially suited for the treatment of structured texts [Beuster,
2001].

Automatic classification methods take vector representations of the objects to be classified as
inputs. In Section Preliminaries, an object was defined as a vector with its attributes as the vector
elements. It would be possible to use this vector directly as the input data for the classification
algorithms, but this representation is not well suited for our classification task. Instead, we used
a well known method from text classification: The descriptions of database objects are treated
as texts. The first object from Figure 1 is represented as:

“43 Repository Root Repository Root 4 1900-01-02 3000-01-01 PDREP 2001-03-
04 BREX V5 2001-07-23 PD PD1”

The second object is represented as:

“1213 Mandant Mandant 33 1900-01-01 3000-01-01 OAI8PV 2001-11-22”

For the classification tasks in scenario one and the second step in scenario two, the input data
for the classifiers are combinations of two objects. In these cases, the textual representations of
the two objects are concatenated. So the input “text” for the combination of the first two objects
is:

“43 Repository Root Repository Root 4 1900-01-02 3000-01-01 PDREP 2001-03-
04 BREX V5 2001-07-23 PD PD1 1213 Mandant Mandant 33 1900-01-01 3000-
01-01 OAI8PV 2001-11-22”

In general, the textual representation of an object is created by concatenating the attribute
strings of the object where each attribute string is separated by a whitespace-character.

In order to classify a text, it has to be transformed into a vector representation. We used the
relative frequency of words in a text as the input feature vector. For each word of the vocabulary
of the training data set, the relative frequency of the word in the document is calculated. This is
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the number of appearances of the word in the text, divided by the total number of words in the
text. This is a common method for text representation, described e.g. in [Mitchell, 1997, page
183]. Since we need fixed vector sizes for some of the classifiers, only the n most informative
words for the classification task are used in the vector representation of the text.

5 Classifiers

For text classification, two functions are needed: The first function transfers a text document
into an input feature representation. This has been described in the previous section. The
second function calculates a classification from this feature representation. Within the Uni-
versity Koblenz-Landau AI Research Group, MIC, a text classification system has been imple-
mented [Beuster, 2001]. MIC supports a variety of classification methods. For this project, we
have used three widely used standard classification methods: Naive Bayes Classifier, Decision
Tree and Neural Network.

Naive Bayes Classification is the most simple form of a bayesian classifier. Bayesian clas-
sifiers use the probabilities of the input vector elements for classification. The assumption of
the naive bayes classifier is that the input vector elements are independent of each other. Naive
bayes classifier are one of the oldest text classification methods.[Maron, 1961] Because of their
simplicity, they became kind of a reference method for estimating the difficulty of a classification
problem.

Decision trees use a tree structure in which each node is labeled with a decision, and each
link with a potential answer. Leaf nodes are labeled with categories. Starting from the top
most node, a decision tree is descended until a leaf node is reached. The label of the leaf node
represents the result of the classification. For decision tree construction, we used the standard
ID3-algorithm[Quinlan, 1979] which always splits on the most informative attribute.

One reason why we used a decision tree classifier is that in difference to the other classifiers
presented in this paper, the classification process of a decision tree is easy to comprehend for a
human. This allows us an analysis of the characteristics used by the classifier to come up with a
classification.

Artificial neural networks mimic the behavior of natural neural networks as found in humans
and animals by using large number of interconnected simple computational units which can be
trained. Neural networks have been proven as a robust methods for all kinds of classification
problems. There is a large number of different neural network architectures. For our classifica-
tion task, we used standard fully connected feed-forward neural network with one hidden layer.
Each input node is associated with an input vector element, and each output node is associated
with a category. Standard backpropagation is used for training [Rumelhart, Hinton, & Williams,
1986].
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6 Input data selection

Two data sets were provided for classification. The first data set contained 3579 database ob-
jects, 79 different relationship types, and 18605 relationships between database object. The
second, considerably smaller data set, contained 748 database objects, 92 different relationship
types, and 1080 relationships between objects. Since we used separate classifiers for each of the
relationship types , we had on average 235 instances of a relationships between two objects for
the first data set, and 12 instances of relationships between two objects for the second data set.

Since there were on average 235 relationship instances (data set one) resp. 12 relationship
instances (data set two) for each relationship type, we had 235

3579 ≈ 6.5% resp. 12
748 ≈ 1.6%

positive examples in the data sets. This got even worse for scenario 1, where two database objects
are given and the classification task is to tell if these two objects are in the given relationship.
In this scenario the input data is the combination of the two objects. Since each object can be
combined with every other object, for n objects we had n·(n−1)

2 combined objects. For the first
data set, these are 6402831 combined objects. Thereby, the number of positive examples was
reduced drastically. We had only 235

6402831 ≈ 0.004% positive examples. For the second scenario,
we had 748·(748−1)

2 = 279378 combined objects. This results in a ratio of 0.004% positive
examples.

The drastic disproportion between positive and negative examples did not allow to use auto-
matic classification algorithms successfully on these data sets. We used two methods to alleviate
the disproportions in the data sets:

Only objects of the same type: One attribute of the objects is their type. A constraint of the
meta data repository is that only objects of the same type can be in a given relation. There are
67 object types in the first data set, and 74 object types in the second data set.

Restricted number of negative examples: Since the disproportion between positive and neg-
ative examples is still too large, we took a drastic approach: The number of negative examples
used for the training of classifiers were reduced to fixed numbers. In the following section, we
present results for runs where the number of negative examples was limited to 500, 2000, and
5000.

We always used two data sets, one for training and one for testing. The positive examples
were distributed equally among these two data sets. After this, negative examples were added
until the desired size of the data sets was reached. Negative examples were selected as shown in
Table 1.

Size restrictions for negative example sets have been implemented on three levels: S1 max.
500 negative examples, S2 max. 2000 negative examples and S3 max. 5000 negative examples.

7 Results

For each classification algorithm, scenario, type of object selection, and example size, the quality
of the classifier was calculated. Since we assume independence between relationship types,
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scenario 1

N3
Random object pairs which are not in the set of positive examples. This is the
set of all object pairs, minus the positive examples.

N2
Object pairs who are in a relation, but not in the relation the classifier is trained
on. N2 is a subset of N1. Only those object pairs are used as negative examples,
which share some other relationship than the relationship to be learned.

N1

Only object pairs of the same object types as the objects in the positive ex-
amples N1 is a subset of N2. It contains only those elements of N2 whose
elements (object-pairs) are of the same type as the object-pairs in the relation-
ship we want to learn.

scenario 2
N3 Random objects which are not in the set of positive examples.
N2 Objects who are in relation, but not in the relation the classifier is trained on.
N1 Objects of the same type as the objects in the positive examples.

N1 ⊆ N2 ⊆ N3

Table 1: Negative example test classes

these calculations were done independently for each relationship type. The data set was split
randomly into two halves of roughly the same size. One half of the data set was used to train
the classifier, and the other half was used to evaluate the quality of the learned classifier. Results
were accumulated over all relationship types. Tables 3 to 8 show the classification results. The
meaning of the table column headings are described in Table 2. Recall, the percentage of objects
classified, and precision, the percentage of objects classified correctly, are the common figures
to give the quality of a classifier. In these tables, the recall-rate is not given explicitly, because it
is always 100%, i.e. all objects from the test data set are classified.

Some test constellations were not applicable, because for some class of examples the data set

test Test scenario as previously described.

e
Total number of elements (objects or object-pairs, depending on the test sce-
nario) in the testing data set.

p% Percentage of positive examples in the testing set.
c Number of examples classified correctly.
cp% Percentage of positive examples classified correctly.
prec Percentage of examples classified correctly.
fp Number of negative examples which have been classified wrongly as positive.
fn Number of positive examples which have been classified wrongly as negative.

Table 2: result table legend
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test e p % c cp % prec fp fn
S1,N2 8997 6.19 8974 97.49 99.74 9 14
S2,N2 18287 3 18013 72.68 98.5 124 150
S3,N2 18090 2.9 17814 79.81 98.47 170 106

Table 3: Decision Tree results scenario 1

test e p % c cp % prec fp fn
S1,N1 2193 30.1 2127 95.45 96.99 36 30
S1,N2 9024 7.73 8873 81.81 98.33 24 127
S2,N1 2254 29.77 2165 93.89 96.05 48 41
S2,N2 10974 6.54 10787 76.74 98.3 20 167
S3,N1 2218 29.08 2153 96.43 97.07 42 23
S3,N2 11026 6.09 10874 80.06 98.62 18 134

Table 4: Decision Tree results scenario 2

is empty. In some cases for any relationship type, there are no objects O1 and O2 such that O1

and O2 are of the same object type as the objects in the set of positive examples, and in some
relationship to each other, but not in the relationship that should be learned (e.g. test scenario 1
and setting [S1,N1]).

8 Conclusion

Existing methods of text classification proved to be surprisingly robust for application to a very
different task. The data used for classification was not well suited for three reasons: It was not
actual text, but descriptions of data base objects. These descriptions were very short. There was
a blatant disproportion between positive and negative examples.

The two techniques Decision Tree and Naive Bayes showed overall high values for precision
and very good values for the recognition of positive examples (cp%). It should be noted that
a good precision value alone does not prioritize one learning technique over the other. In the
scenarios we given in this paper, potential relationships are presented to a human user who
decides whether the system’s suggestions is correct (it is an relationship indeed) or not (there is
no relationship). In these scenarios, false negative (existing relationships that are not detected)
are a lot worse than false positives (non-existing relationships that are detected wrongly). False
negatives literally get lost: They are not presented to the user, and therefore can not be added
manually. On the other hand, false positives are presented to the user, so she can remove them.

Based on these considerations, we can conclude that the optimization by restricting the nega-
tive example sets according to N1 yields the overall best results. The small decrease in precision
when using N1 and N2 are not significant, and acceptable because of the improved recognition
of positive examples.
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test e p % c cp % prec fp fn
S1,N2 8983 6.13 8734 95.64 97.23 225 24
S2,N2 18346 2.94 17779 96.11 96.91 546 21
S3,N3 18249 3.06 17610 94.44 95.5 608 31

Table 5: Naive Bayes results scenario 1

test e p % c cp % prec fp fn
S1,N1 2213 30.37 2135 94.94 96.48 44 34
S1,N2 9011 7.11 8825 92.04 97.94 135 51
S2,N1 2191 28.75 2117 96.51 96.62 52 22
S2,N2 10901 5.68 10709 91.92 98.24 142 50
S3,N1 2213 29.46 2142 96.17 96.79 46 25
S3,N2 11027 6.01 10831 91.4 98.22 139 57

Table 6: Naive Bayes results scenario 2

All of the three learning techniques yield good results for scenario 2 and negative example
class N1 (precision: 96.37%–97.07%; cp%: 96.17%–96.43%). For scenario 1, the neural net-
work classifier gives slightly worse correct positive values (cp%: 61.44%) than Naive Bayes and
Decision Tree. For all three techniques, the precision values ranges from 96% to 98, 47%.

Using the classification system presented drastically reduced the necessity for human inter-
vention. Still, the system is not completely autonomous. Although the error rate is fairly low,
it is still advisable to let a human review the suggestions of the system. Beside reducing the
amount of human intervention, the human supervisor also needs less expert knowledge than a
human classifying database objects unaided. When using a decision tree algorithm for classifi-
cation, the researcher additionally can get insights into the structure of the data, and may develop
meta-knowledge about what kinds of objects are in relationships.

So far, we investigated the problem with three standard machine learning techniques. We plan
to use other classification algorithms like SVMs, which perform excellent in a number of fields.
The approach presented in this paper can be improved further by changing the representation of
the objects. So far, we treat them as plain text, ignoring all structural information. We expect
improved behavior from better representations which preserve the structural information of the
objects.

test e p % c cp % prec fp fn
S1,N2 9005 5.95 8968 94.78 99.59 9 28
S2,N2 18283 3.08 17961 58.97 98.24 91 231
S3,N2 18251 3.11 17924 61.44 98.21 108 219

Table 7: Neural Network results scenario 1
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test e p % c cp % prec fp fn
S1,N1 2201 29.62 2118 95.71 96.23 55 28
S1,N2 9016 7.55 8878 85.32 98.47 38 100
S2,N1 2271 29.94 2193 96.18 96.57 52 26
S2,N2 11086 5.65 10938 81.79 98.66 34 114
S3,N1 2232 29.08 2151 96.3 96.37 57 24
S3,N2 10976 65.01 10827 81.67 98.64 28 121

Table 8: Neural Network results scenario 2
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